Cancer research

Esophageal cancer “cell of origin” identified

Columbia University Medical Center (CUMC) researchers have identified cells in the upper digestive tract that can give rise to Barrett’s esophagus, a precursor to esophageal cancer. The discovery of this “cell of origin” promises to accelerate the development of more precise screening tools and therapies for Barrett’s esophagus and esophageal adenocarcinoma, the fastest growing form of cancer in the United States. The findings, made in mice and in human tissue, were published in the online edition of Nature.

Basal progenitor cells
Arrows point to the population of unique basal progenitor cells (p63+ KRT7+ Claudin18-), located at the equivalent of the gastroesophageal junction in a mouse model.
Lab of Jianwen Que, MD, PhD, Columbia University Medical Center

In Barrett’s esophagus, some of the tissue in the tube connecting the mouth to the stomach is replaced by intestinal-like tissue, causing heartburn and difficulty swallowing. Most cases of Barrett’s stem from gastroesophageal reflux disease (GERD)—chronic regurgitation of acid from the stomach into the lower esophagus. A small percentage of people with Barrett’s esophagus develop esophageal adenocarcinoma, the most common form of esophageal cancer. Incidence of esophageal adenocarcinoma has risen by 800 percent over the past four decades. However, little progress has been made in screening and treatment over the same period. If esophageal cancer is not detected early, patients typically survive less than a year after diagnosis.

Study on mice

Researchers have proposed at least five models of Barrett’s esophagus, each based on a different cell type. “However, none of these experimental models mimics all of the characteristics of the condition,” said study leader Jianwen Que, MD, PhD, associate professor of medicine at Columbia. “This led us to believe that there must be another, yet-to-be-discovered, cell of origin for Barrett’s esophagus.”

In the current study, Dr. Que and his colleague, Ming Jiang, PhD, an associate research scientist in CUMC’s Department of Medicine and first author of the paper, genetically altered mice to promote the development of Barrett’s esophagus. His team then examined the mice’s gastroesophageal junction tissue for changes. “All of the known cells in this tissue remained the same, but we found a previously unidentified zone populated by unique basal progenitor cells,” he said. Progenitor cells are early descendants of stem cells that can differentiate into one or more specific cell types.

Lineage tracing

Now that we know the cell of origin for Barrett’s esophagus, the next step is to develop therapies that target these cells or the signaling pathways that are activated by acid reflux.

Dr. Que

Dr. Que’s team then performed a technique called lineage tracing to determine if these unique basal progenitor cells, tagged with a fluorescent protein, can give rise to Barrett’s esophagus. In the tests, several mouse models were used to show that bile acid reflux or genetic changes promote expansion of these cells, leading to the development of Barrett’s esophagus. The same observations were made in organoids (artificially grown masses of cells that resemble an organ) created from unique basal progenitor cells that were isolated from the gastroesophageal junction in mice and humans. “Now that we know the cell of origin for Barrett’s esophagus, the next step is to develop therapies that target these cells or the signaling pathways that are activated by acid reflux,” said Dr. Que.


Source: Columbia University Medical Center

18.10.2017

Read all latest stories

Related articles

Photo

Cytosponge research

‘Pill on a string’ test could transform oesophageal cancer diagnosis

A ‘pill on a string’ test can identify ten times more people with Barrett’s oesophagus than the usual GP route, a new study shows. The test, which can be carried out by a nurse in a GP surgery,…

Photo

Hidden in our genes

scHOT: Discovering the fate of cell development

As cells develop, changes in how our genes interact determines their fate. Differences in these genetic interactions can make our cells robust to infection from viruses or make it possible for our…

Photo

New mechanism discovered

UPR: Stress raises cancer cells' chemo resistance

Resistance of cancer cells against therapeutic agents is a major cause of treatment failure, especially in recurrent diseases. An international team around the biochemists Robert Ahrends from the…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Cell Culture Products

Specialties

Sarstedt – Cell Culture Products

SARSTEDT AG & CO. KG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH