News • Enzyme discovery

Epigenetic agitator of pancreatic cancer cells identified

Genentech researchers have identified an enzyme that shifts pancreatic cancer cells to a more aggressive, drug-resistant state by epigenetically modifying the cells’ chromatin.

Credit: Viotti et al., 2018

The study, which will be published in the Journal of Cell Biology, suggests that targeting this enzyme could make pancreatic cancer cells more vulnerable to existing therapies that currently have only limited effect against this deadly form of cancer. The vast majority of cancers originate in epithelial tissues, where cells are normally organized into tightly packed sheets. As cancers progress, however, many tumor cells lose their epithelial characteristics and transition to a so-called mesenchymal state in which they detach from neighboring cells and become more mobile, allowing them to invade and form secondary tumors in other tissues. Mesenchymal tumor cells are also more resistant to chemotherapy drugs than their epithelial counterparts, and many of them appear to have stem cell–like properties that allow them to drive tumor growth.

Priming pancreatic cancers with an epithelial-inducing agent might not only decrease invasion, metastasis, and limit stem cell–like behavior, but may also increase responses to existing cancer drugs

Ira Mellman

Given these unfavorable characteristics, researchers are interested in developing ways to reverse the epithelial-to-mesenchymal transition in tumors. This approach could be particularly beneficial in the treatment of pancreatic cancer, one of the deadliest forms of the disease that typically shows little response to existing chemo- and immunotherapies. “Priming pancreatic cancers with an epithelial-inducing agent might not only decrease invasion, metastasis, and limit stem cell–like behavior, but may also increase responses to existing cancer drugs,” explains Ira Mellman, vice president of cancer immunology at Genentech.

Researchers have already identified many of the proteins that regulate epithelial-to-mesenchymal transitions, but attempts at targeting these proteins in cancer patients to convert mesenchymal tumor cells into epithelial cells have so far proven unsuccessful. However, large-scale changes in cell state, such as epithelial–mesenchymal transitions, are often orchestrated by epigenetic regulators that control the expression of many different genes by chemically modifying their DNA or the histone proteins that package them into chromosomes.

Mellman and colleagues, including the study’s first author Manuel Viotti, screened 300 different epigenetic regulators and found that reducing the levels of a histone-modifying protein called SUV420H2 caused mesenchymal pancreatic cells grown in the laboratory to regain many of the characteristics of epithelial cells. Pancreatic cancer cells lacking SUV420H2 showed increased levels of epithelial cell–specific genes and lower levels of genes typically expressed by mesenchymal cells.

Photo
SUV420H2 (green) is highly expressed in advanced, invasive regions (lower right) of pancreatic adenocarcinoma, but is less prevalent in healthy regions of the tissue (upper right) and early stage lesions (upper left) that retain the epithelial cell marker E-cadherin (yellow).
Source: Viotti et al., 2018

“The acquisition of these epithelial characteristics was sufficient to reduce cell invasion and motility and increase sensitivity to gemcitabine and 5-fluorouracil, two of the most commonly used chemotherapies in human pancreatic ductal adenocarcinoma,” says Viotti. The cells also appeared to lose their ability to act like stem cells capable of driving tumor growth.

In contrast, when the researchers boosted SUV420H2 levels, epithelial-like pancreatic cancer cells were converted into a mesenchymal-like state. Mellman and colleagues then examined human pancreatic adenocarcinoma samples and saw that SUV420H2 levels were low in healthy regions of the pancreas, slightly elevated during the early stages of tumorigenesis, and strongly increased in advanced, invasive portions of the tumor that had lost their epithelial characteristics.

Histone-modifying enzymes such as SUV420H2 are relatively easy to target with specific inhibitory drug molecules, but Mellman and colleagues caution that it is still unclear whether or not converting mesenchymal tumor cells into epithelial cells will be beneficial for cancer patients. “Nonetheless, promoting the epithelial state by targeting SUV420H2 in combination with conventional chemotherapies and decreasing resistance might prove to be an effective treatment for the devastating diagnosis of pancreatic cancer,” Mellman says.


Source: The Rockefeller University Press

12.12.2017

Read all latest stories

Related articles

Photo

News • Trial finds improved survival rates

Pancreatic cancer: chemotherapy before surgery brings benefits

Treating pancreatic cancer patients with chemotherapy before surgery significantly improved 1-year survival rates compared to immediate surgery, a randomised clinical trial has found.

Photo

News • Immune systems timulation

Using senescent cells as anti-cancer vaccines

Researchers from Barcelona report that vaccination with senescent cells shows promise in experimental models of melanoma and pancreatic cancer.

Photo

News • New mechanism discovered

UPR: Stress raises cancer cells' chemo resistance

Resistance of cancer cells against therapeutic agents is a major cause of treatment failure, especially in recurrent diseases. An international team around the biochemists Robert Ahrends from the…

Related products

Fujifilm Wako – Autokit CH50 Assay

Immunoassays

Fujifilm Wako – Autokit CH50 Assay

FUJIFILM Wako Chemicals Europe GmbH
Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Mindray – BC-6800Plus Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6800Plus Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
MolGen – PurePrep 96

Extraction

MolGen – PurePrep 96

MolGen
Subscribe to Newsletter