News • Health IT

Computer algorithm maps cancer resistance to drugs

New methods of studying the evolution of treatment resistance in head and neck cancer are being developed by researchers at the Johns Hopkins Kimmel Cancer Center. The scientists wanted to examine how cancers acquire resistance to treatment over time and whether those changes could be modeled computationally to determine patient-specific timelines of resistance.

In vitro time course reflects clinical evolution of cetuximab response and evolution of acquired resistance.
Source: Johns Hopkins Kimmel Cancer Center

The Coordinate Gene Activity in Pattern Sets algorithm (CoGAPS) was used to determine the molecular changes associated with resistance during the course of the development of the resistance. It required developing new methods of collecting data from in vitro cell models and developing a computational analysis approach to measure these observations that has not previously been done for cancer. “The biggest novelty in this paper is considering time as a variable. We have to prove that it matters before putting that burden on patients,” said senior author Elana Fertig, Ph.D. “But we think it will result in better treatment.”

The study examined cetuximab treatment effects on cancer cells from head and neck squamous cell carcinoma over 11 weeks. During that time, they used the same pool of cells to see what happened during the time period, attempting to avoid any outside variables from using different batches of cells.

CoGAPS was used to quantify the evolving changes during treatment. The resulting data showed how the changes occurred over time and when those changes resulted in immediate therapeutic response or resistance. Having that information could lead to combined or alternative therapies to combat the resistance. "Most model systems were developed to sync to existing data, comparing pre- and post-treatment,” said co-lead author Genevieve Stein-O’Brien, Ph.D. “To take this algorithm and find out how the resistance was acquired, we needed to know what was going on in between (the pre- and post-treatment) during the full time course.”

Although a wide variety of molecular alterations conferring resistance to the treatment have been discovered, the mechanisms and timing of their evolution are still poorly understood. With the CoGAPS algorithm combining experimental biology and computer programming, the scientists hope to give doctors and patients better information about how the disease is progressing during treatment.

Co-lead author Luciane Kagohara, Ph.D., said CoGAPS is a departure from standard approaches but allows them to go deeper and study therapeutic resistance and the fundamental pathways in an individual. “If we can map that, it will really pave the way to predict when resistance is going to occur and what drugs can be used to combat that resistance,” she said.

The scientists believe the computational approach to studying cancer cells over time with targeted therapies could be used for other types of cancers and other drug therapies.

Source: Johns Hopkins Medicine


Read all latest stories

Related articles


News • Calibration Verification

Randox Announces New Linearity Sets

Randox Quality Control are pleased to announce, as part of our ongoing growth and development, the launch of our new Acusera Calibration Verification range for Beckman and Roche Cobas instruments.


News • Study on chatbot reliability and accuracy

Can you count on ChatGPT for cancer information?

Chatbots become popular resources for cancer information - but are their results accurate? Researchers evaluated the reliability of ChatGPT’s cancer information.


Article • Existing solutions need to mature, experts find

Interactive mobile cancer apps: promising, but formative

Interactive mobile apps have become ubiquitous in daily life. The Covid-19 pandemic has escalated the use of disease-specific monitoring apps. Mobile apps enabling cancer patients to self-manage…

Related products

Advanced Edge Enhancement

Accessories / Complementary Systems

Canon · Advanced Edge Enhancement

Canon Medical Components Europe B.V.
Amulet Bellus II

Mammo Workstations

Fujifilm · Amulet Bellus II

Beckman Coulter – DxONE Command Central Workstation

LIS, Middleware, POCT

Beckman Coulter – DxONE Command Central Workstation

Beckman Coulter Diagnostics
Beckman Coulter – Remisol Advance

LIS, Middleware, POCT

Beckman Coulter – Remisol Advance

Beckman Coulter Diagnostics
cockpit4med Radiology Dashboard

Business Intelligence

medavis · cockpit4med Radiology Dashboard

medavis GmbH
Subscribe to Newsletter