This unique biosensing platform consists of an array of ultrathin graphene...

This unique biosensing platform consists of an array of ultrathin graphene layers and gold nanostructures. The platform, combined with high-tech imaging (Raman spectroscopy), detects genetic material (RNA) and characterizes different kinds of stem cells with greater reliability, selectivity and sensitivity than today’s biosensors.

Image: Letao Yang, KiBum Lee, Jin-Ho Lee and Sy-Tsong (Dean) Chueng

News • Parkinson’s diseases

Better biosensor technology created for stem cells

Researchers have created better biosensor technology that may help lead to safe stem cell therapies for treating Alzheimer’s and Parkinson’s diseases and other neurological disorders.

The technology, which features a unique graphene and gold-based platform and high-tech imaging, monitors the fate of stem cells by detecting genetic material (RNA) involved in turning such cells into brain cells (neurons), according to a study in the journal Nano Letters.

Stem cells can become many different types of cells. As a result, stem cell therapy shows promise for regenerative treatment of neurological disorders such as Alzheimer’s, Parkinson’s, stroke and spinal cord injury, with diseased cells needing replacement or repair. But characterizing stem cells and controlling their fate must be resolved before they could be used in treatments. The formation of tumors and uncontrolled transformation of stem cells remain key barriers.

“A critical challenge is ensuring high sensitivity and accuracy in detecting biomarkers – indicators such as modified genes or proteins – within the complex stem cell microenvironment,” said senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University–New Brunswick. “Our technology, which took four years to develop, has demonstrated great potential for analyzing a variety of interactions in stem cells.”

The team’s unique biosensing platform consists of an array of ultrathin graphene layers and gold nanostructures. The platform, combined with high-tech imaging (Raman spectroscopy), detects genes and characterizes different kinds of stem cells with greater reliability, selectivity and sensitivity than today’s biosensors.

The team believes the technology can benefit a range of applications. By developing simple, rapid and accurate sensing platforms, Lee’s group aims to facilitate treatment of neurological disorders through stem cell therapy.

Stem cells may become a renewable source of replacement cells and tissues to treat diseases including macular degeneration, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis and rheumatoid arthritis, according to the National Institutes of Health.

Source: Rutgers University

15.11.2019

Related articles

Photo

News • Opening the blood-brain barrier

3D-printed acoustic holograms against Alzheimer's or Parkinson's

A research team in Spain and the US has created 3D-printed acoustic holograms to improve the treatment of diseases like Alzheimer's and Parkinson's, among others.

Photo

News • Intra-nasal administration

Microrobots for treating neurological diseases

The joint research team of Prof. Hongsoo Choi (DGIST) & Prof. Sung Won Kim (Seoul St. Mary’s Hospital), developed an hNTSC-based microrobot for minimally invasive delivery into the brain tissue…

Photo

News • Neurology

New potential biotherapy against Alzheimer's disease

Researchers at the University of Florida have discovered that a modified version of an important immune cell protein could be used to treat Alzheimer's disease. The study reveals that soluble…

Related products

Subscribe to Newsletter