Video • Immune system sabotage

SARS-CoV-2 induces shutdown of protein synthesis

Although its name is relatively unspecific and indeed opaque, the Nonstructural Protein 1 (Nsp1) encoded by the coronavirus SARS-CoV-2, which is responsible for the current pandemic, has now been shown to have a devastating effect on host cells.

Nsp1 is in fact one of the central weapons used by the virus to ensure its own replication and propagation in human hosts. Nsp1 was identified as a virulence factor following the outbreak of the related SARS coronavirus nearly 20 years ago, when it was shown to inhibit protein synthesis in infected cells. Now researchers based at Ludwig-Maximilians-Universität München (LMU) and Ulm University Hospital have discovered what makes Nsp1 so potent. In a paper which appears in the journal Science, they describe the protein’s mode of action in detail.

Photo
Devastating effect: virus protein Nsp1
Source: Beckmann Lab

In all biological cells, the task of synthesizing proteins is performed by complex molecular machines known as ribosomes. Ribosomes interact with messenger RNAs (mRNAs), which serve as blueprints for protein synthesis, and translate the nucleotide sequence of each mRNA into the amino-acid sequence of the corresponding protein. The amino-acid sequence in turn determines the shape and biological function of each individual protein. Ribosomes consist of two distinct subunits, and Nsp1 binds to the smaller one – the 40S subunit. The mRNA initially binds to the small subunit, prior to the latter’s interaction with the 60S subunit to form the cavity through which the mRNA is then threaded. The new study shows that one end of the Nsp1 protein interacts with the 40S subunit in such a way that it prevents binding of the mRNA. With the aid of high-resolution cryo-electron microscopy, Professor Roland Beckmann and his colleagues at the LMU Gene Center have shown in three-dimensional detail how Nsp1 binds tightly to a specific pocket in the small ribosomal subunit and inhibits the formation of functional ribosomes. Further experiments revealed that Nsp1 can also interact with specific configurational states of the fully assembled ribosome.

In addition, the team led by Konstantin Sparrer at Ulm University Hospital was able to show that the shutdown of protein synthesis leads to an almost complete collapse of one of the body’s major lines of defense against the virus. Nsp1 inactivates the innate immune response by inhibiting a vital signaling cascade. The authors of the study hope that the insights gained will make it possible to find ways to neutralize the novel coronavirus, and thus mitigate the severity of the respiratory disease that it causes. One potential approach, they say, would be to develop a molecule that masks the viral protein’s binding site. This should be feasible, since the Nsp1-binding pocket itself appears not to have an essential role in ribosomal function.


Source: Ludwig-Maximilians-Universität München

20.07.2020

Related articles

Photo

News • Underrated helper

T-cells: key for a new type of Covid-19 vaccine?

Researchers propose a new Covid-19 vaccine that specifically instructs the immune system to produce T-cells rather than antibodies - a promising alternative for people with a weakened immune system.

Photo

News • Fending off the coronavirus

The role of T-cells in SARS-CoV-2 virus defense

Our immune system can efficiently fend off viral diseases. Two types of immune cells play an important role in this process: The T-cells, which firstly can directly destroy virus-infected cells and…

Photo

News • Dermatology

Exploring fibroblast subtypes and skin cancer aggressiveness

New insights into the previously unknown diversity of cancer-associated fibroblasts in basal cell carcinoma, squamous cell carcinoma and melanoma could pave the way for new therapies.

Related products

Subscribe to Newsletter