A peptide that stimulates receptors in neurons reduced the amount of toxic tau...
A peptide that stimulates receptors in neurons reduced the amount of toxic tau proteins present. Tau proteins are labeled yellow. Left image shows untreated neurons; right image shows neurons treated with the peptide.

Images from Natura Myeku

News • Battle for the brain

New Alzheimer's treatment approach targets tau

A new idea for treating Alzheimer’s disease could eradicate the toxic proteins most closely linked to cognitive decline in the places where they do the most damage, a study from researchers at Columbia University Vagelos College of Physicians and Surgeons suggests.

The study was published online in Science Translational Medicine.

Early in Alzheimer’s disease, toxic tau proteins accumulate inside the brain’s synapses, compromising the transmission of signals from one neuron to another. Cognitive decline in Alzheimer’s is closely linked to tau: the more tau that accrues, the faster cognition deteriorates. Eradicating toxic tau could improve cognition in Alzheimer’s patients, and in a previous study, the Columbia team discovered that tau levels can be reduced by enhancing the activity of proteasomes, cell structures that degrade old or unwanted proteins. “Enhancing proteasome activity improves cognition in mice that make a lot of mutant tau, but we don’t want to boost protein degradation throughout the cell where too much might cause unwanted effects,” says the study’s senior author Natura Myeku, PhD, assistant professor of pathology & cell biology at Columbia University Vagelos College of Physicians and Surgeons.

By targeting a certain family of receptors that are present mainly on the surface of synapses, our study raises the possibility of a whole new approach to remove toxic proteins in Alzheimer’s

Natura Myeku

The new study reveals a potential solution. The most toxic tau proteins, the researchers found, accumulate predominantly on one side of the synapse. And the activity of proteasomes on that side of the synapse can be amplified without affecting proteasomes in other parts of the brain.

Myeku’s team found that a peptide that stimulates PAC1 receptors, which are largely found on the same side of the synapse as tau, reduced toxic tau levels and improved cognitive performance in mice with early-stage tau accumulation. The peptide had little effect on the other side of the synapse. “Although the peptide is quickly degraded in the body and not a good candidate for therapy in humans,” Myeku says, “we are currently testing another drug, prucalopride, for the same purpose.” Prucalopride, which stimulates a receptor with similar action as PAC1, was recently approved by the FDA for the treatment of gastrointestinal disease. “By targeting a certain family of receptors that are present mainly on the surface of synapses, our study raises the possibility of a whole new approach to remove toxic proteins in Alzheimer’s and other neurodegenerative diseases, such as Parkinson’s and Huntington’s.” Myeku says.


Source: Columbia University

27.05.2021

Related articles

Photo

News • Opening the blood-brain barrier

3D-printed acoustic holograms against Alzheimer's or Parkinson's

A research team in Spain and the US has created 3D-printed acoustic holograms to improve the treatment of diseases like Alzheimer's and Parkinson's, among others.

Photo

News • Brain cancer immunotherapy

Turning immune cells against glioblastomas

Scientists at the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have developed CAR-T cells capable of targeting malignant gliomas while preserving healthy tissue.

Photo

News • Neurodegenerative diseases

Tauopathy or Alzheimer's? Biomarker and PET imaging for improved diagnosis

Researchers have identified biomarkers that, in conjunction with PET imaging, enable doctors to reliably distinguish between primary 4-repeat tauopathies and Alzheimer's disease.

Related products

Subscribe to Newsletter