Image source: MPI-IS

Robotic innovation

Micro robot rolls deep into the body

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell travelling through the circulatory system.

It has the shape, the size and the moving capabilities of leukocytes and could perhaps be well on its way – in a rolling motion of course – to revolutionize the minimally invasive treatment of illnesses.

Simulating a blood vessel in a laboratory setting, the team succeeded in magnetically steering the microroller through this dynamic and dense environment. The ball-shaped drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. It spans every cell, offering an ideal route for navigation. The research project was published in Science Robotics.

Our vision was to create the next-generation vehicle for minimally invasive targeted drug delivery

Metin Sitti

The team took inspiration from white blood cells, the task force of the immune system, as they are the only motile cells in the blood stream. On their patrol to places where pathogens have invaded, they roll along the blood vessel walls, penetrating out of the blood vessel when they reach a trouble spot. The key to their motility is mainly due to substantially decreased flow velocity at the vessel walls.

Exploiting the same phenomenon, the scientists developed a microrobot they can actively propel forward and navigate inside the blood vessels in physiological high-speed blood flow conditions thanks to its magnetic properties. “Our vision was to create the next-generation vehicle for minimally invasive targeted drug delivery that can reach even deeper tissues inside the body with even more difficult access routes than what was previously possible,” says Metin Sitti, Director of the Physical Intelligence Department at the MPI-IS and last author of the publication. Conventional therapies suffer from non-specific drug distribution in the body, he elaborates further, potentially causing severe side-effects in non-targeted organs and tissues.

Photo
Illustration of the micro robots' ability of targeted drug delivery

Image source: MPI-IS

Each microroller has a diameter of just under 8 micrometers and is made of glass microparticles. One side is covered with a thin nickel and gold film, the other with anti-cancer drug molecules and specific biomolecules that can recognize cancer cells. “Using magnetic fields, our microrobots can navigate upstream through a simulated blood vessel, which is challenging due to the strong blood flow and dense cellular environment. None of the current microrobots can withstand this stream. Additionally, our robots can autonomously recognize cells of interest such as cancer cells. They do this thanks to a coating of cell-specific antibodies on their surface. They can then release the drug molecules while on the move,” Yunus Alapan explains. He is a postdoctoral researcher in the Physical Intelligence Department and the co-lead author of the publication.

In the laboratory setting, the microroller can reach a speed of up to 600 micrometers per second – around 76 body lengths per second, representing the fastest magnetic microrobot at this size scale. However, several challenges need to be addressed before they can perform this motion in a real-life scenario. In fact, they are far from being tested in the human body. In the lab, the team was able to image the robots using microscopes and to steer them using electromagnetic coils. “However, resolution of the current imaging modalities in a clinic are not high enough for imaging individual microrobots inside the human body. Furthermore, therapeutic cargoes transported by a single microrobot would not be sufficient, given the size difference between a microrobot (around 10 micrometers) and the target tissues (thousands of micrometers). Therefore, the controlled manipulation of a high number of microrobots in a swarm would be necessary to generate a sufficient effect. But we are still far from that,” Ugur Bozuyuk says, who is a Ph.D. student in the same department and co-lead of the study. This was only the beginning.

Recommended article

Photo

Miniscule swimmers

Microrobots could re-shape drug delivery

Scientists have developed minute flexible robots that could help revolutionise drug delivery in the future. These ‘microrobots’ are so small that they could be ingested, or inserted into human veins to deliver drug therapies directly to diseased body areas.

The motivation for the research project goes back to Nobel laureate Richard Feynman’s famous talk “There is plenty of room at the bottom”. In his talk, the physicist envisions mechanical devices at the micron scale that can move through blood vessels and perform the surgeries from within the human body, coining the term “swallowing the surgeon”.

Over the past two decades, the research field has accelerated thanks to many leaps regarding fabrication techniques, materials used, actuation and imaging of the micro machines. However, current microrobots inside the human body have been mostly limited to superficial tissues (e.g., inside the eye), locations with relatively easier access routes (e.g., the gastrointestinal tract), and stagnant or low-velocity fluidic environments. To reach deeper locations inside the body, there is perhaps no way around the circulatory system, despite the conditions being very harsh. The scientists hope the bio-inspired strategy they have developed will help create a new venue for controlled navigation of microrobots in the circulatory system in high-speed blood flow conditions. This would potentially pave the way for targeted and localized therapeutic delivery by microrobots.


Source: Max Planck Institute for Intelligent Systems (MPI-IS)

24.05.2020

Read all latest stories

Related articles

Photo

After vaccination

Covid-19: Clinicians uncover rare blood clotting syndrome

A team led by a clinical academic at University College London (UCL) has outlined the mechanism behind rare cases of blood clots and low platelets seen in patients who have had the Oxford/AstraZeneca…

Photo

CVT risk evaluation

Thrombosis risk after Covid vaccination: actual infection far more dangerous, say experts

Researchers at the University of Oxford report that the risk of the rare blood clotting known as cerebral venous thrombosis (CVT) following Covid-19 infection is around 100 times greater than normal,…

Photo

Analysing molecular composition

Infrared light is key in novel blood test

A new study carried out by a team of laser physicists, molecular biologists and physicians based at LMU Munich and the Max Planck Institute for Quantum Optics has confirmed the temporal stability of…

Related products

Alsachim, a Shimadzu group company – Dosinaco

Clinical Chemistry

Alsachim, a Shimadzu group company – Dosinaco

Alsachim, a Shimadzu Group Company
Analyticon Biotechnologies AG - Urilyzer 100 Pro

Urinalysis

Analyticon Biotechnologies AG - Urilyzer 100 Pro

Analyticon Biotechnologies AG
Analyticon Biotechnologogies – Hemolyzer 3 NG / Hemolyzer 5 NG

Blood Cell Counter

Analyticon Biotechnologogies – Hemolyzer 3 NG / Hemolyzer 5 NG

Analyticon Biotechnologies AG
ASP Lab Automation – Recapper KapSafe

Sample Processing

ASP Lab Automation – Recapper KapSafe

ASP Lab Automation AG
ASP Lab Automation – Tube Sorter SortPro

Sample Processing

ASP Lab Automation – Tube Sorter SortPro

ASP Lab Automation AG
Subscribe to Newsletter