Image source: Scientific Animations Inc., Pancreatic Cancer, CC BY-SA 4.0

Genetic mutations

'Invade and evade': Deciphering pancreatic cancer’s tactics

Two known gene mutations induce pathways that enhance pancreatic cancer’s ability to invade tissues and evade the immune system. Researchers report the molecular details of this process providing insights into druggable targets for immunotherapies.

Mutations in the genes KRAS and TP53 are closely linked to pancreatic ductal adenocarcinoma, by far the most common type of pancreatic cancer. Pancreatic cancers are often already malignant when diagnosed, making its five-year survival rate extremely low ­— less than ten percent. So, understanding how it evolves at the molecular level could help anti-cancer drug development. Hisataka Sabe of Hokkaido University and colleagues in Japan conducted tests in human cancer cells and in mouse models of the disease to investigate the roles of KRAS and TP53 gene mutations in pancreatic ductal adenocarcinoma. The study was published in the journal Proceedings of the National Academy of Sciences (PNAS).

The researchers (from left): Ari Hashimoto, Shigeru Hashimoto, Hisataka Sabe,...
The researchers (from left): Ari Hashimoto, Shigeru Hashimoto, Hisataka Sabe, and Shotaro Furukawa

Source: Hokkaido University

Malignancies can develop in parallel with oncogenesis, making it difficult to detect cancer cells in its early stage

Hisataka Sabe

They found that mutations in KRAS increased the production of two proteins, called ARF6 and AMAP1, which they previously discovered constitute a signalling pathway involved in cancer cell invasion and malignancy. Mutations in the gene TP53 were also found to facilitate ARF6 activation, in addition to causing a metabolic pathway, called the mevalonate pathway, to go into overdrive. This pathway is known for its role in enhancing the invasiveness of some cancers.

Further investigations of the ARF6-AMAP1 pathway found it was involved in promoting cell-surface expression of an immune checkpoint protein, called PD-L1, on cancer cells, in addition to enhancing its recycling within the cell. PD-L1 expression on cancer cells helps them hide from the immune system, avoiding attack. Mutated KRAS and TP53 genes, and over-activation of the mevalonate pathway, both played crucial roles in the eventual cell-surface expression and recycling of PD-L1.

“We found that two well-known driver mutations of pancreatic cancer can promote both invasion to other tissues and evasion of the immune system through promoting the ARF6 pathway. This means that malignancies can develop in parallel with oncogenesis, making it difficult to detect cancer cells in its early stage,” says Hisataka Sabe. “Further studies are still needed to determine the extent of PD-L1 involvement in immune evasion. Studies are also needed to consider if PD-L1- and ARF6-targeting drugs can make pancreatic cancer cells more susceptible to attack by the immune system,” he continued.


Source: Hokkaido University

19.08.2019

Read all latest stories

Related articles

Photo

Against rebound

Pancreatic cancer: Genome-wide analysis reveals new strategies

For some cancers, initial treatment with chemotherapy brings positive, but only temporary, results: tumors shrink, but then rebound as the cancer becomes drug-resistant. This pattern of…

Photo

Major global study reveals

Colorectal, pancreatic cancer rates up 10% in last 30 years

The results of a major study across 195 countries, presented at UEG Week Barcelona 2019, indicate that global death rates for pancreatic cancer and incidence rates for colorectal cancer both…

Photo

Methylation of microRNA

Is it cancer? New method could tell the difference

Levels of molecules associated with genetic function, such as microRNA, can be an important indicator of abnormal activity associated with cancer. However, little is known about how different…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Agena Bioscience - MassARRAY Colon Panel

Amplification/Detection

Agena Bioscience - MassARRAY Colon Panel

Agena Bioscience GmbH
Eppendorf – BioSpectrometer fluroescence

Research Use Only (RUO)

Eppendorf – BioSpectrometer fluroescence

Eppendorf AG
Eppendorf – μCuvette G1.0

Research Use Only (RUO)

Eppendorf – μCuvette G1.0

Eppendorf AG
Orion Diagnostica Oy – Orion GenRead

Amplification

Orion Diagnostica Oy – Orion GenRead

Orion Diagnostics Oy