News • CD4-PP vs. UTI

Reducing the risk of infection for patients with urinary catheters

Patients with indwelling catheters through the urethra often suffer from bacterial infections. A newly discovered synthetic peptide is a promising treatment option, even agains antibiotic-resistant pathogens.

portrait of John Kerr White
John Kerr White

Image source: Karolinska Institutet; photo: Johannes Frandsén

The study, published in the journal Cellular and Molecular Life Sciences, opens up for new possible treatment methods. 

Patients, who are treated with indwelling catheters through the urethra, often have bacterial colonisation in their urine after a period of time. However, these bacteria can cause infections that are sometimes difficult to treat and can even be life-threatening. “Increased antibiotic resistance further reduces the chances of successful treatment, therefore alternatives to traditional antibiotic treatment are an important aspect,” says John Kerr White, researcher at the Department of Microbiology, Tumor and Cell Biology, Solna, Karolinska Institutet, and shared first author. 

A possible alternative treatment focuses on the use of antimicrobial peptides, naturally found in the body. They have among other things, antibacterial qualities, but the disadvantage is their relatively short lifespan. In recent years, antimicrobial peptides have been synthetically developed to improve their stability and efficacy against bacteria, whilst being harmless to the body's own cells.

portrait of Annelie Brauner
Prof Annelie Brauner

Image source: Karolinska Institutet; photo: Johannes Frandsén 

Annelie Brauner's research group has studied a specific synthetic antimicrobial peptide, CD4-PP, which was developed by professor Ulf Göransson´s research group, Uppsala University. In the study, the researchers examined what effect CD4-PP had on the most common bacterial strains that cause urinary tract infections, such as E. coli, K. pneumoniae and P. aeruginosa. “The study shows that CD4-PP has good bactericidal effect against these urinary tract bacteria as well as being effective against antibiotic-resistant bacteria, which can be very difficult to treat," says Annelie Brauner, professor of Clinical microbiology, at the Department of Microbiology, Tumor and Cell Biology, Solna, Karolinska Institutet, and the study's senior author. 

CD4-PP was also shown to be active against biofilm, a kind of mucus blanket that bacteria form, which increases their resistance to the body's immune system as well as to different antibiotics. CD4-PP was found to prevent the formation of new biofilm and also dissolved existing biofilm. The beneficial effect was further enhanced by the fact that CD4-PP also activated the immune system to protect cells against infection.

Preventing bacteria from attaching to the catheter itself is an important part of reducing the risk of infections. “When we applied CD4-PP together with a saline fluid on urinary catheters, we found that the adhesion of E. coli to the catheters decreased. Since bacterial adhesion is the first step of the infection process, this effect is important in preventing urinary tract infections. We now plan to further develop and refine how CD4-PP can be applied when using catheters. We will also be investigating how CD4-PP reacts to other types of bacterial strains, such as those that cause infections in wounds”, says Annelie Brauner. 

Source: Karolinska Institutet


Read all latest stories

Related articles


News • Unexpected reactivation

BYOB (Bring your own bacteria) as cause of hospital infections?

Some hospitalized patients’ infections may develop from their own bacteria, new research results suggest. The study in mice indicates that medical interventions can awaken dormant, hidden bacteria.


News • Gene-snipping bacterial defenses

CRISPR: a promising tool to fight antibiotic resistance, but...

Could the 'gene scissors' CRISPR be used to make resistant bacteria susceptible to first-line antibiotics again? According to new reseach, yes – but the experts also point out serious caveats.


News • Proof of Concept funding

New research to starve resistant bacteria

Researchers are developing novel active substances designed to cut off the nutrient supply of resistant bacteria, effectively starving them to death.

Related products

Subscribe to Newsletter