News • Subtraction technique

Deep learning optimal for coronary stent evaluation by CTA

According to ARRS’ American Journal of Roentgenology (AJR), the combination of deep-learning reconstruction (DLR) and a subtraction technique yielded optimal diagnostic performance for the detection of in-stent restenosis by coronary CTA.

Noting that these findings could guide patient selection for invasive coronary stent evaluation, combining DLR with a two-breath-hold subtraction technique “may help overcome challenges related to stent-related blooming artifact,” added corresponding author Yi-Ning Wang from the State Key Laboratory of Complex Severe and Rare Diseases at China’s Peking Union Medical College Hospital.

Between March 2020 and August 2021, Wang and team studied 30 patients (22 men, 8 women; mean age, 63.6 years) with a total of 59 coronary stents who underwent coronary CTA using the two-breath-hold technique (i.e., noncontrast and contrast-enhanced acquisitions). Conventional and subtraction images were reconstructed for hybrid iterative reconstruction (HIR) and DLR, while maximum visible in-stent lumen diameter was measured. Two readers independently evaluated images for in-stent restenosis (≥50% stenosis).

Ultimately, coronary CTA using DLR and subtraction technique—with a combined (conventional and subtraction images) interpretation—yielded PPV, NPV, and accuracy for in-stent restenosis for reader 1 of 73.3%, 93.2%, and 88.1%, and for reader 2 of 75.0%, 84.3%, and 83.1%, respectively.

Acknowledging that the two-breath-hold subtraction technique requires an additional noncontrast acquisition (and thus a higher radiation dose), “DLR allows a reduction in radiation exposure, while improving image quality,” the authors of the AJR article pointed out.

Source: American Roentgen Ray Society


13.08.2022

Related articles

Photo

News • Automated tumor detection and segmentation

Deep learning helps detect lung cancer on CT

A new deep learning model shows promise in detecting and segmenting lung tumors. The findings of the study could have important implications for lung cancer treatment.

Photo

News • Cardiac imaging analysis

AI greatly speeds up heart chamber segmentation from MRI scans

From 45 minutes to just a few seconds: A new computer model utilises AI to examine cardiac MRI scans in the four-chamber plane, potentially offering speedy and dependable heart health evaluation.

Photo

Article • Photon-counting CT, strain imaging, 4D flow MRI

How new technologies shape the future of cardiovascular radiology

New approaches to cardiovascular radiology are evolving to help clinicians gain an increasingly better insight into heart conditions. Latest developments in cardiovascular radiology include…

Related products

Subscribe to Newsletter