News • Subtraction technique

Deep learning optimal for coronary stent evaluation by CTA

According to ARRS’ American Journal of Roentgenology (AJR), the combination of deep-learning reconstruction (DLR) and a subtraction technique yielded optimal diagnostic performance for the detection of in-stent restenosis by coronary CTA.

Noting that these findings could guide patient selection for invasive coronary stent evaluation, combining DLR with a two-breath-hold subtraction technique “may help overcome challenges related to stent-related blooming artifact,” added corresponding author Yi-Ning Wang from the State Key Laboratory of Complex Severe and Rare Diseases at China’s Peking Union Medical College Hospital.

Between March 2020 and August 2021, Wang and team studied 30 patients (22 men, 8 women; mean age, 63.6 years) with a total of 59 coronary stents who underwent coronary CTA using the two-breath-hold technique (i.e., noncontrast and contrast-enhanced acquisitions). Conventional and subtraction images were reconstructed for hybrid iterative reconstruction (HIR) and DLR, while maximum visible in-stent lumen diameter was measured. Two readers independently evaluated images for in-stent restenosis (≥50% stenosis).

Ultimately, coronary CTA using DLR and subtraction technique—with a combined (conventional and subtraction images) interpretation—yielded PPV, NPV, and accuracy for in-stent restenosis for reader 1 of 73.3%, 93.2%, and 88.1%, and for reader 2 of 75.0%, 84.3%, and 83.1%, respectively.

Acknowledging that the two-breath-hold subtraction technique requires an additional noncontrast acquisition (and thus a higher radiation dose), “DLR allows a reduction in radiation exposure, while improving image quality,” the authors of the AJR article pointed out.

Source: American Roentgen Ray Society


13.08.2022

Read all latest stories

Related articles

Photo

News • Radiograph evaluation

AI uses chest X-rays to determine "true" age of a patient

Osaka Metropolitan University scientists have developed an advanced AI model that utilizes chest radiographs to accurately estimate a patient’s "true" age.

Photo

News • Algorithmic interaction

Medical imaging AI can ask another AI for "second opinion"

Researchers at Monash University have designed a new co-training AI algorithm for medical imaging that can effectively mimic the process of seeking a second opinion.

Photo

News • Noninvasive diagnosis in high-risk CAD patients

Photon-counting CT: “bloom” reduction improves heart disease detection

Photon-counting CT enables accurate diagnosis of coronary artery disease in high-risk patients, a potentially significant benefit for people previously ineligible for noninvasive screening.

Related products

REiLI

Artificial Intelligence

Fujifilm · REiLI

FUJIFILM Europe GmbH
Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Alphenix Biplane High Definition Detector

Bi-Plane

Canon · Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Subscribe to Newsletter