News • Combining common risk factors

Deep learning enables dual screening for cancer and CVD

Heart disease and cancer are the leading causes of death in the United States, and it’s increasingly understood that they share common risk factors, including tobacco use, diet, blood pressure, and obesity.

Photo
Visualizations of the features learned by the algorithm

Image source: Chao et al., Nature Communications 2021 (CC BY 4.0)

Thus, a diagnostic tool that could screen for cardiovascular disease while a patient is already being screened for cancer has the potential to expedite a diagnosis, accelerate treatment, and improve patient outcomes.

In research published in Nature Communications, a team of engineers from Rensselaer Polytechnic Institute and clinicians from Massachusetts General Hospital developed a deep learning algorithm that can help assess a patient’s risk of cardiovascular disease with the same low-dose computerized tomography (CT) scan used to screen for lung cancer. This approach paves the way for more efficient, more cost-effective, and lower radiation diagnoses, without requiring patients to undergo a second CT scan. “In this paper, we demonstrate very good performance of a deep learning algorithm in identifying patients with cardiovascular diseases and predicting their mortality risks, which shows promise in converting lung cancer screening low-dose CT into a dual screening tool,” said Pingkun Yan, an assistant professor of biomedical engineering and member of the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer.

Numerous hurdles had to be overcome in order to make this dual screening possible. Low-dose CT images tend to have lower image quality and higher noise, making the features within an image harder to see. Using a large dataset from the National Lung Screening Trial (NLST), Yan and his team used data from more than 30,000 low-dose CT images to develop, train, and validate a deep learning algorithm capable of filtering out unwanted artifacts and noise, and extracting features needed for diagnosis. Researchers validated the algorithm using an additional 2,085 NLST images. 

The Rensselaer team also partnered with Massachusetts General Hospital, where researchers were able to test this deep learning approach against state-of-the-art scans and the expertise of the hospital’s radiologists. The Rensselaer-developed algorithm, Yan said, not only proved to be highly effective in analyzing the risk of cardiovascular disease in high-risk patients using low-dose CT scans, but it also proved to be equally effective as radiologists in analyzing those images. In addition, the algorithm closely mimicked the performance of dedicated cardiac CT scans when it was tested on an independent dataset collected from 335 patients at Massachusetts General Hospital. “This innovative research is a prime example of the ways in which bioimaging and artificial intelligence can be combined to improve and deliver patient care with greater precision and safety,” said Deepak Vashishth, the director of CBIS. 


Source: Rensselaer Polytechnic Institute

22.05.2021

Related articles

Photo

Article • AI-assisted image analysis

More accuracy in brain tumour segmentation

Precise segmentation of anatomical structures greatly benefits cancer diagnosis. Using AI and deep learning methods, researchers are developing a high-precision 3D viewer software for medical image…

Photo

News • "Candycrunch"

AI and mass spectrometry to find cancer clues at lightning speed

Researchers have developed an AI model that increases the potential for detecting cancer through sugar analyses. The AI model is faster and better at finding abnormalities than current methods.

Photo

News • Atrial fibrillation early warning

Deep learning predicts heart arrhrythmia 30 minutes in advance

Researchers have developed a deep-learning model that predicts the transition from a normal cardiac rhythm to atrial fibrillation 30 minutes before onset, with an accuracy of around 80%.

Related products

Subscribe to Newsletter