The team, led by Led by FRIC scientific director Michaela Gack, Ph.D.,...
The team, led by Led by FRIC scientific director Michaela Gack, Ph.D., discovered an enzyme that blocks the body’s immune response to the novel coronavirus infection.

Source: Cleveland Clinic

News • Coronavirus

COVID-19: Enzyme blocks immune response to infection

Researchers from Cleveland Clinic’s Florida Research and Innovation Center (FRIC) have identified a potential new target for anti-COVID-19 therapies. Led by FRIC scientific director Michaela Gack, Ph.D., the team discovered that a coronavirus enzyme called PLpro (papain-like protease) blocks the body’s immune response to the infection. More research is necessary, but the findings suggest that therapeutics that inhibit the enzyme may help treat COVID-19.

“SARS-CoV-2 – the virus that causes COVID-19 – has evolved quickly against many of the body’s well-known defense mechanisms,” Gack said. “Our findings, however, offer insights into a never-before characterized mechanism of immune activation and how PLpro disrupts this response, enabling SARS-CoV-2 to freely replicate and wreak havoc throughout the host. We discovered that inhibiting PLpro may help rescue the early immune response that is key to limiting viral replication and spread.”

One of the body’s frontline immune defenses is a class of receptor proteins, including one called MDA5, that identify invaders by foreign patterns in their genetic material. When the receptors recognize a foreign pattern, they become activated and kick-start the immune system into antiviral mode. This is done in part by increasing the downstream expression of proteins encoded by interferon-stimulated genes (ISGs).

In this study, published in Nature Microbiology, Gack and her team identified a novel mechanism that leads to MDA5 activation during virus infection. They found that ISG15 must physically bind to specific regions in the MDA5 receptor – a process termed ISGylation – in order for MDA5 to effectively activate and unleash antiviral actors against invaders. They showed that ISGylation helps to promote the formation of larger MDA5 protein complexes, which ultimately results in a more robust immune response against a range of viruses.

“While discovery of a novel mechanism of immune activation is exciting on its own,” Gack said, “we also discovered a bit of bad news, which is that SARS-CoV-2 also understands how the mechanism works, considering it has already developed a strategy to block it.”

The research team shows that the coronavirus enzyme PLpro physically interacts with the receptor MDA5 and inhibits the ISGylationprocess. “We’re already looking forward to the next phase of study to investigate whether blocking PLpro’s enzymatic function, or its interaction with MDA5, will help strengthen the human immune response against the virus,” Gack said. “If so, PLpro would certainly be an attractive target for future anti-COVID-19 therapeutics.”

Postdoctoral fellow GuanQun “Leo” Liu, Ph.D., a member of Gack’s laboratory at the FRIC, is the lead author on the study, which was supported by the National Institutes of Health. The FRIC – which complements and expands research underway at Cleveland Clinic’s Lerner Research Institute and Cleveland Clinic Florida’s five regional hospitals – is located in Port St. Lucie, Florida, and is closely integrated with the Global Center for Pathogen Research & Human Health.

Source: Cleveland Clinic

23.03.2021

Read all latest stories

Related articles

Photo

News • Anosmia

Loss of smell after Covid-19: Researchers find key reason

After an infection with SARS-CoV-2, some people fail to recover their sense of smell. US researchers took a closer look at the olfactory nerve cells to find the reason for Covid-19-induced anosmia.

Photo

News • First on site, but short-lived

New insights into immune defence may explain Covid-19 reinfections

A new study has found that antibodies produced in the nose decline nine months after Covid-19 infection, while antibodies found in the blood last at least a year.

Photo

News • Answer to SARS-CoV-2 mutations

One step closer to 'variant-proof' Covid-19 vaccine

A vaccine design approach that could protect against new variants of SARS-CoV-2 but also potentially protects against other coronaviruses is one step closer to reality as a result of new research.

Related products

Beckman Coulter – Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter – Access Procalcitonin (PCT)

Beckman Coulter Diagnostics
Fujifilm Wako – μTASWako i30

Immunoassays

Fujifilm Wako – μTASWako i30

FUJIFILM Wako Chemicals Europe GmbH
Mindray – CL-1000i/1200i Chemiluminescence Immunoassay System

Immunoassays

Mindray – CL-1000i/1200i Chemiluminescence Immunoassay System

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Subscribe to Newsletter