Helicobacter pylori is one of the most widespread bacterial pathogens worldwide.

Image source: Shutterstock/Kateryna_Kon

Natural nanocapsules

A new approach for tackling superbugs – without antibiotics

Scientists have uncovered a novel antibiotic-free approach that could help prevent and treat one of the most widespread bacterial pathogens, using nanocapsules made of natural ingredients.

Helicobacter pylori is a bacterial pathogen carried by 4.4 billion people worldwide, with the highest prevalence in Africa, Latin America and the Caribbean. Although the majority of infections show no symptoms, if left untreated the pathogen can cause chronic inflammation of the stomach lining, ulcers and is associated with an increased risk of gastric cancer.

A 'priority pathogen'

Antimicrobial resistance is one of the biggest challenges facing the world and it is predicted to cause more deaths than cancer by the year 2050 unless urgent action is taken

Francisco Goycoolea

In 2017, the World Health Organisation included H. pylori on its list of antibiotic-resistant "priority pathogens" – a catalogue of bacteria that pose the greatest threat to human health and that urgently need new treatments. Current treatments involve multi-target therapy with a combination of antibiotics, but this has promoted the emergence of resistant strains.

Now, UK and German scientists have uncovered a novel antibiotic-free approach using only food- and pharmaceutical-grade ingredients, which are non-toxic and safe for consumption, to be used as a supplement to complement antibiotic current therapies. “Small capsules made of natural ingredients could offer a new means to deter a globally-spread ‘superbug’ pathogen”, says Professor Francisco Goycoolea from the School of Food Science and Nutrition at the University of Leeds. The formulation is delivered through billions of bundled together nanocapsules, which are smaller than a human blood cell, and prevents the bacteria from attaching to and infecting the stomach cells. 

The team, which includes researchers from the universities of Leeds, Münster and Erlangen, hope the nanocapsules could be used as a preventative measure, as well as helping eradicate H. pylori and reduce antibiotic resistant strains. Study co-author Professor Francisco Goycoolea said: “Antimicrobial resistance is one of the biggest challenges facing the world and it is predicted to cause more deaths than cancer by the year 2050 unless urgent action is taken. Helicobacter pylori is a globally-spread pathogen. It is estimated that up to 70% of people host this pathogen worldwide. The bacteria hide under the gastric mucus layer where antibiotics do not penetrate effectively. This often leads to recurrent infections and gives rise to resistant strains. New integral approaches are needed to tackle antimicrobial resistance and research into alternatives to antibiotics is vital. This novel formulation, consisting of small capsules made of natural ingredients, could offer a new means to deter a globally-spread ‘superbug’ pathogen.”

Recommended article

Photo

Medical Training

Diagnosing gastrointestinal infections

The human gut literally teems with microorganisms from at least 1,000 different species that are increasingly considered to be a valuable resource for the prediction, aetiology and prognosis of disease. Due to continual contact with the environment, primarily via food, the gut is susceptible to infection when a virus, parasite or bacterium enters and disrupts normal gut microbiota (or flora).

The research, published in the journal ACS Applied Bio Materials, was carried out in vitro – using bacteria and stomach cells outside a human body. 

The nanocapsules are loaded with curcumin – a natural compound found in turmeric which has well-documented anti-inflammatory and anti-tumour properties(Article in German). The capsules are coated with lysozyme, an enzyme that helps prevent bacterial infections, and a very low concentration of dextran sulfate, a water-soluble polysaccharide that binds receptors in the bacteria and in the mucosal layer that coats the stomach. The nanopsules are bundled together in the required dose and the formulation prevents the bacteria from adhering to the stomach cells. The team has filed a patent based on this formulation.

Study co-author Professor Andreas Hensel from the Institute for Pharmaceutical Biology and Phytochemistry of University of Münster said: “Standard antibiotics used in today’s clinical practice are quite broad acting compounds, disturbing cell wall architecture, protein formation of membrane integrity. A new generation of antibacterials might be based on more specific molecular targets of the bacteria, acting probably not as broad as the older compounds, but therefore more precisely against specific virulence factors of specific bacteria. The research published in ACS Applied Bio Materials might pinpoint a new way towards controlled drug targeting against H. pylori and its specific adhesion and virulence factors.”


Source: University of Leeds

17.10.2019

Read all latest stories

Related articles

Photo

Stealthy survivors

Tracing the evolution of E. coli

Bacteria are stealthy organisms. They can multiply in minutes and evolve to survive what we throw at them—including antibiotics. The World Health Organization calls antibiotic resistance “one of…

Photo

Breakthrough against C. diff

New Clostridioides difficile vaccine on the horizon

Researchers at the University of Exeter first identified a gene in the 'hospital bug' Clostridioides difficile responsible for producing a protein that aids in binding the bacteria to the gut of its…

Photo

MRSA & Co.

Test to detect antibiotic resistance in less than 45 minutes

Scientists from Scotland are developing a low cost, rapid diagnostic sensor test which aims to show the susceptibility of bacteria to antibiotics within 45 minutes. Laboratory testing of samples can…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH