Exemplary cultures of bacterial symbionts of the nematode (or thread worm) Caenorhabditis elegans

© Christian Urban, Kiel University

News • Symbiosis study

Tracking down the microbiome

Research team from Kiel analyses how microorganisms affect elementary functions of their host organism, using the example of nematode worms

All living creatures – from the simplest animal and plant organisms right up to the human body – are colonised by numerous microorganisms. They are thus in a functional relationship with these microbes, and together form a so-called metaorganism. The investigation of this symbiotic cooperation between host organism and microorganisms is a key challenge for modern life sciences research. The composition of the microbiome, i.e. the totality of the microorganisms which colonise a body, is well studied in numerous organisms. However, how these microbes cooperate with the host, and what role they play in its biological functions, is still largely unknown.

The Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms" at Kiel University (CAU) aims to understand the communication and thus also the functional consequences of host-microbe interactions. Researchers at the CRC 1182 have now, for the first time, presented a functional repertoire of the microbiome of the nematode (or thread worm) Caenorhabditis elegans, thereby providing new insights into the connection between bacterial properties and metabolic functions of the host. The Kiel scientists recently published their results, which could also serve as a model for the analysis of the microbiome functions in other organisms, in the ISME Journal.

female scientist in medical laboratory
One of the authors of the study, Nancy Obeng, processes Biolog plates in order to compare the use of different nutrients by bacteria.

© Christian Urban, Kiel University

Due to its simple structure and short generation time, the nematode C. elegans is a classic model organism in biological and medical research. However, to date, the role of its microbial symbionts has been mostly overlooked. Only a few years ago, a research team from the Evolutionary Ecology and Genetics research group at CAU characterised, for the first time, the natural bacterial colonizers of this worm. The Kiel research team also obtained first evidence of a functional influence of microorganisms, for example on the stress resistance of the worm or its ability to resist pathogens. "On this basis, we wanted to gain an overview of the functional repertoire of the natural worm microbiome," emphasised Nancy Obeng, doctoral researcher in the Evolutionary Ecology and Genetics research group and CRC 1182 member. "To do so, we predicted the metabolic networks of the nematode microbiome, based on whole genome sequence data from the bacteria," continued Obeng.

For this purpose, the CRC 1182 researchers analysed the genome sequences of a total of 77 representative bacterial species from the digestive tract of the worm, and used these to infer metabolic networks of these microorganisms using mathematical modelling. This approach allowed them to predict which metabolites can arise as end products of certain available nutrients. "The conclusion of our modelling is that the microbiome of the worm is capable of producing nearly all essential nutrients for the host," emphasised Johannes Zimmermann, doctoral researcher in the Medical Systems Biology research group at the CAU and also a member of the CRC. These results were subsequently confirmed experimentally in the laboratory. "It is primarily the frequently-occurring microbial colonizers, which provide the nematode with its required nutrient components," added Obeng.

diagnostic plate in medical laboratory
Close-up of a so-called diagnostic Biolog plate, with which the metabolic activity of bacteria is measured.

© Christian Urban, Kiel University

Using the example of the nematode C. elegans, the CRC 1182 researchers have thus developed a model to theoretically and experimentally derive metabolic networks on the basis of whole genome sequencing data. Similar to how the nematode serves as a model system for various life processes, such as individual development or the ageing process, the methodology developed here could in future also help to determine the functional scope of the microbiome in other organisms – including humans.

"With our new approach for functional analysis of the microbiome, we have opened the door to a better understanding of the fundamental interaction of organisms and their microbial symbionts," emphasised CAU Professor Hinrich Schulenburg, head of the Evolutionary Ecology and Genetics research group and Vice-Speaker of the CRC 1182. "In the future, we intend to perform comparable functional analyses across the entire spectrum of model organisms studied in our Collaborative Research Centre here in Kiel," added CAU professor Christoph Kaleta, head of the Medical Systems Biology group. Currently, the scientists from the Kiel metaorganism CRC are applying for renewed funding from the German Research Foundation (DFG), to continue exploring the interaction of organisms with their microbial partners.


Source: Kiel University (CAU)

25.10.2019

Read all latest stories

Related articles

Photo

News • Bioorganic chemistry

Why M. tuberculosis is so resistant to drugs and immune defenses

A consortium of researchers from Russia, Belarus, Japan, Germany and France led by the Skolkovo Institute of Science and Technology have uncovered the way in which Mycobacterium tuberculosis survives…

Photo

News • Influential genes

Our microbiome is shaped by genetic differences in the immune system

Genetic differences in the immune system shape the collections of bacteria that colonize the digestive system, according to new research by scientists at the University of Chicago. In carefully…

Photo

News • A new approach

"Universal antibodies" disarm various pathogens

Scientists from the German Cancer Research Center (DKFZ) have been studying how the immune system succeeds in keeping pathogens in check. For the first time, the researchers have now discovered…

Related products

Subscribe to Newsletter