Small bowel imaging

For gastrointestinal exams, MRI fluoroscopy offers an alternative to conventional methods of swallowing and gastric emptying that are so repugnant to patients.

Photo: Small bowel imaging

MRI exams eliminate radiation dose exposure, provide full views of soft-tissue structures, and produce multiplanar imaging. For radiologists, the value of MRI of the small bowel is its ability to display both morphology and motility. Small bowel motility (the bowel wall motions and contractions of muscles within the intestinal walls) dysfunction can be a symptom of inflammatory bowel disease, e.g. Crohn’s, obstructive bowel disease, diabetes mellitus and scleroderma (a disease of connective tissue that causes fibrosis to form). The standard protocol for MRI motility assessment begins with the acquisition of several coronal 2-D sequences over the entire small bowel using fast imaging pulse sequences, such as echo planar imaging, fast spin echo, or steady-state free precession.

Evaluating small bowel motility is tedious and time consuming. The quantification of small bowel motility patterns, such as contraction frequencies and amplitudes, can be made by measuring the cross-sectional diameter change of selected single small-bowel segments over time. That calculating and plotting measurements is so time consuming and susceptible to errors has formed one of the primary barriers against using MRI-assisted motility assessment in hospital radiology departments. The challenge is that all measurement points must be corrected due to the inherent modality movement or shifting of the small bowel segment.

Radiology researchers at the Institute of Diagnostic, Interventional, and Paediatric Radiology at University Hospital in Bern, with software engineers at Sohard AG in Bern, developed a software prototype (Motasso) to quantify small bowel peristalsis. The software permits semi-automatic measurements of small bowel diameter over long time periods, thus displaying motility.

With colleagues at Zütovh University Hospital, ECR session* presenters Doctors Michael A Patak, Sebastian Bickelhaupt and Johannes M Froehlich, conducted a study to validate Motasso software for small bowel motility tracking by comparing it with the traditional manual measurement method. In January, they reported their analysis of 45 MRI enterography exams online in Clinical Radiology.

The research team analysed 91 small-bowel segments. Small bowel motility parameters including contractions per minute, luminal diameter and amplitude were measured three times each in identical segments, using both manual techniques and the semi-automatic software assisted method. They compared the methods for agreement, repeatability, and time needed for each measurement.

The Motasso software worked very well. It produced standardised, accurate identification of the small bowel wall and subsequent quantification of small-bowel motility. It expedited measurement, and performed each assessment in half a minute compared to a minute and a half when done manually. It also provided higher reproducibility and standardisation of data acquisition made by different individuals.

‘Measurements with Motasso are faster, more accurate, and significantly more reproducible than measurements by hand. The user-friendly point and click interface facilitates widespread clinical adoption of the software,’ the authors wrote. They also believe that the Motasso software can provide new insight into the pathophysiology of small-bowel motility-related gastrointestinal complaints. Research is on-going.

06.03.2014

Read all latest stories

Related articles

Photo

"Alliance for Precision Health”

Missouri University partners up with Siemens

Siemens Healthineers, University of Missouri System (UM System) and University of Missouri Health Care (MU Health Care) launch "Alliance for Precision Health.” The ten-year collaboration will…

Photo

Research

'Uncanny Valley': Brain network evaluates robot likeability

Scientists have identified mechanisms in the human brain that could help explain the phenomenon of the 'Uncanny Valley' - the unsettling feeling we get from robots and virtual agents that are too…

Photo

Microsatellites

Stomach and colorectal cancer: AI identifyies patients for immunotherapy

Changes in certain sections of the genetic material of cancer cells, so-called microsatellites, can provide an important indication of whether immunotherapy may be successful in a patient with…

Related products

allMRI GmbH – MRI vacuum immobilisation for head coils

Accessories / Complementary systems

allMRI GmbH – MRI vacuum immobilisation for head coils

allMRI GmbH
allMRI GmbH – MRI wheelchair – foldable

Accessories / Complementary systems

allMRI GmbH – MRI wheelchair – foldable

allMRI GmbH
allMRI GmbH – MRI wheeled waste bin – 90 liters

Accessories / Complementary Systems

allMRI GmbH – MRI wheeled waste bin – 90 liters

allMRI GmbH
Block Imaging

3 Tesla

Block Imaging

Block Imaging
Canon – Vantage Elan

1.5 Tesla

Canon – Vantage Elan

Canon Medical Systems Europe B.V.
Canon – Vantage Galan 3 T

3 Tesla

Canon – Vantage Galan 3 T

Canon Medical Systems Europe B.V.