News • Silicon-based technology

Self-powered X-ray detector to revolutionize imaging

A new X-ray detector prototype is on the brink of revolutionizing medical imaging, with dramatic reduction in radiation exposure and the associated health risks, while also boosting resolution in security scanners and research applications, thanks to a collaboration between Los Alamos National Laboratory and Argonne National Laboratory researchers.

Photo
X-ray detectors made with 2-dimensional perovskite thin films convert X-ray photons to electrical signals without requiring an outside power source, and are a hundred times more sensitive than conventional detectors.

Credit: Los Alamos National Laboratory

"The perovskite material at the heart of our detector prototype can be produced with low-cost fabrication techniques," said Hsinhan (Dave) Tsai, an Oppenheimer Postdoctoral fellow at Los Alamos National Laboratory. "The result is a cost-effective, highly sensitive, and self-powered detector that could radically improve existing X-ray detectors, and potentially lead to a host of unforeseen applications."

The detector replaces silicon-based technology with a structure built around a thin film of the mineral perovskite, resulting in a hundred times more sensitivity than conventional silicon-based detectors. In addition, the new perovskite detector does not require an outside power source to produce electrical signals in response to X-rays.

High sensitivity perovskite detectors could enable dental and medical images that require a tiny fraction of the exposure that accompanies conventional X-ray imaging. Reduced exposure decreases risks for patients and medical staff alike. The fact that perovskite detectors can be made very thin allows them to offer increased resolution for highly detailed images, which will lead to improved medical evaluations and diagnoses. Lower-energy and increased-resolution detectors could also revolutionize security scanners and imaging in X-ray research applications.

Because perovskite is rich in heavy elements, such as lead and iodine, X-rays that easily pass through silicon undetected are more readily absorbed, and detected, in perovskite. As a result, perovskite significantly outperforms silicon, particularly at detecting high-energy X-rays. This is a crucial advantage when it comes to monitoring X-rays at high-energy research facilities, such as synchrotron light sources.

Perovskite films can be deposited on surfaces by spraying solutions that cure and leave thin layers of the material behind As a result, the thin-layer detectors will be much easier and cheaper to produce than silicon-based detectors, which require high-temperature metal deposition under vacuum conditions.

"Potentially, we could use ink-jet types of systems to print large scale detectors," said Tsai. "This would allow us to replace half-million-dollar silicon detector arrays with inexpensive, higher-resolution perovskite alternatives."

In addition to the promise of thin-layer perovskites in X-ray detectors, thicker layers work well provided they include a small voltage source. This suggests that their useful energy range could be extended beyond X-rays to low-energy gamma-rays.

Source: Los Alamos National Laboratory

14.04.2020

More on the subject:
Read all latest stories

Related articles

Photo

News • MRI, DR, mammography

High-end imaging equipment for NovaLife Polyclinic

On 9 December 2023, NovaLife Polyclinic, with over 15 years of experience in the private healthcare sector in Timișoara, proudly inaugurated its state-of-the-art branch in the vibrant capital city…

Photo

News • Chest X-ray evaluation

Human readers still outperform AI in lung disease identification

Reports of AI gaining the upper hand in diagnostic imaging interpretation are piling up, but there are still areas where the eye of a trained human radiologist remains superior.

Photo

News • Radiograph evaluation

AI uses chest X-rays to determine "true" age of a patient

Osaka Metropolitan University scientists have developed an advanced AI model that utilizes chest radiographs to accurately estimate a patient’s "true" age.

Related products

Subscribe to Newsletter