Individuals for individuals

Printing 3-D human parts

Everyone is unique – and so is human anatomy. Thus orthopaedics or implantology call for medical products that provide a perfect fit and demand is high for one-off components, or small production runs. At the same time, the materials used and manufacturing standards applied must fulfil extremely stringent quality control. This also holds for specialised surgical instruments and medical devices, which must be produced quickly and cost-effectively.

‘EOS, the world’s leading technology supplier in the field of industrial 3-D printing of metals and polymers, enables exactly this,’ the company reports. ‘Based on 3-D CAD data, parts are built layer by layer, by depositing powder material instead of, for example, milling a workpiece from solid block by removing material. Where conventional manufacturing reaches its limits, industrial 3-D printing permits a design-driven manufacturing process allowing producers to come up with faster, more flexible and cost-effective development and production methods. Unlike conventional manufacturing methods, 3-D printing as such allows for maximum design flexibility and functional integration. Thus, test series, prototypes, patient-specific one-off parts and small production runs can be manufactured at a profit.

Climber and amputee C J Howard moves with his 3-D printed titanium climbing prosthetic, on Hey Y’all Watch This, at Luther Spires in the South Lake Tahoe, CA area.
Source: Mandy Ott
Photo
Prototype of a Plate Bender, used to contour plates for spinal surgery.
Source: DePuy Spine

‘The medical sector recognised this and has been among the early adopting industries. Industrial 3D printing is meeting their requirements, supporting both surgeons and patients. Different patient populations around the world require different parameters for surgical equipment and medical implants. With additive manufacturing, patient-specific designs are possible, paving the way for an improved and “custom serial production” medical care. Orthopaedics adopted the approach very early on. So let’s take the example of a professional rock climber who experienced a complex fracture in his ankle that couldn’t be repaired. 

Through medical scans, an exact replica of the climber’s ankle was reconstructed in a program that communicated a specific design to the EOS system. The 3-D printing technology was able to create a part that closely matched his anatomy and, once implanted, the climber’s recovery was quick because he had a more specific joint replacement rather than an ankle fusion or trauma plates that may not have allowed him to return to climbing. Beyond patient specificity, industrial 3-D printing also enables a greater complexity in surgical equipment design. EOS customer DePuy Spine had worked and partnered with leading clinicians and researchers for over 20 years to advance knowledge of both professionals and patients in addressing spinal pathologies and to develop products to treat spine disorders. Getting the right instruments to a surgeon who needs them can be an arduous process.

There’s still a long way ahead but it’s becoming more feasible

Eos

‘Prototyping, revisions, materials selection, cadaver testing and manufacturing can create total wait times of many months. DePuy Spine was able to cut those lead times dramatically by employing the EOS technology. DePuy Spine was able to introduce a paradigm shift in part design, as such not designing for manufacturability anymore, but for functionality. The consulting doctors now can be very exact about their requirements for tools such as blades, racks, tweezers, and callipers. CAD designs can be adjusted more easily and another duplication of a tool can be made – instead of just one – to give doctors more choice and greater flexibility. 

‘Some opportunities the technology can offer are top in mind today: e.g. creating a point of care application, which is one of the many holy grails within the medical industry. Imagine being able to go to any hospital and have whatever ailment you had treated on the spot,’ Eos adds. ‘There’s still a long way ahead but it’s becoming more feasible while we continue to focus on material advancements and the continuing improvement of the technology.’

14.11.2017

Read all latest stories

Related articles

Photo

Let it grow

3D printed templates for bone implants made of salt

With the help of a 3D printed salt template, ETH researchers from ETH Zurich have succeeded in producing magnesium scaffolds with structured porosity that are suitable for bioresorbable bone…

Photo

Biocompatible alternative

Non-silicone breast implant to enter clinical trial

Surgery complications, implant rupture, tissue contractures or even plain immune intolerance – silicone breast implants can cause a variety of unfavourable conditions. Because of this, many women…

Photo

Tailor-made

Artificial heart valves from silicone

Scientists at ETH Zürich and the South African company Strait Access Technologies are using 3D printing to produce custom-made artificial heart valves from silicone. This could help meet an ageing…

Related products

Siemens Healthineers – syngo.plaza

RIS/PACS

Siemens Healthineers – syngo.plaza

Siemens Healthineers
Siemens Healthineers – syngo.via

RIS / PACS

Siemens Healthineers – syngo.via

Siemens Healthineers
Agfa HealthCare – Dose

Dose Management Systems

Agfa HealthCare – Dose

Agfa HealthCare
Agfa HealthCare – DR 14e detector

DR Retrofit

Agfa HealthCare – DR 14e detector

Agfa HealthCare
Agfa HealthCare – DR 14s detector

DR Retrofit

Agfa HealthCare – DR 14s detector

Agfa HealthCare
Agfa HealthCare – DR 17e detector

DR Retrofit

Agfa HealthCare – DR 17e detector

Agfa HealthCare