Fighting resistant bacteria

Novel class of antibiotics brings new options

Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics. Swiss researchers co-headed by the University of Zurich have now discovered a new class of antibiotics with a unique spectrum of activity and mechanism of action.

Image source: Matthias Urfer, UZH

By disrupting outer membrane synthesis, the antibiotics effectively kill Gram-negative bacteria. The researchers published their findings in the journal Nature.

According to the World Health Organization (WHO), Gram-negative bacteria like Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacteriaceae that are resistant to the carbapenem and cephalosporin antibiotics, pose a growing threat to human health. These pathogens can cause severe and often life-threatening infections. The last new class of antibiotics to reach the market against these microorganisms, the fluoroquinolones, dates back to the 1960s. Novel antibiotics with new mechanisms of action against Gram-negative bacteria are urgently needed, especially because resistance against the last resort antibiotic colistin is on a global rise.

According to our results, the antibiotics bind to complex fat-like substances called lipopolysaccharides and to BamA, an essential protein of the outer membrane of Gram-negative bacteria

John Robinson

Swiss research teams headed by the University of Zurich (UZH) and Polyphor AG now report the discovery and characterization of a new family of synthetic antibiotics that possess broad-spectrum anti-Gram-negative antimicrobial activity. "The new antibiotics interact with essential outer membrane proteins in Gram-negative bacteria", says John Robinson from the UZH Department of Chemistry, who co-headed the study. "According to our results, the antibiotics bind to complex fat-like substances called lipopolysaccharides and to BamA, an essential protein of the outer membrane of Gram-negative bacteria", Robinson adds.

e.coli bacteria under fluorescent microscope
Escherichia coli cells treated with a novel chimeric peptidomimetic antibiotic. Cells in blue are alive while green cells are already killed by the antibiotic (cell lysis).

Image source: Matthias Urfer, UZH

BamA is the main component of the so-called ß-barrel folding complex (BAM), which is essential for outer membrane synthesis. After targeting this essential outer membrane protein, the antibiotics destroy the integrity of the bacterial membranes and the cells burst. The outer membrane of Gram-negative bacteria has the important function to protect the cells from toxic environmental factors, such as antibiotics. It is also responsible for the uptake and export of nutrients and signaling molecules. "Despite its critical importance, so far no clinical antibiotics target these key proteins required for outer membrane biogenesis", Robinson says.

The research was carried out in close collaboration with Polyphor AG, a former UZH start-up company that was founded in 1996. The clinical stage biopharmaceutical company based in Allschwil now plans to progress one compound into human clinical trials. "POL7306, a first lead molecule of the novel antibiotics class, is now in preclinical development", says Daniel Obrecht, chief scientific officer at Polyphor and co-head of the work. 


Source: University of Zurich

24.10.2019

Read all latest stories

Related articles

Photo

Klebsiella pneumoniae

Biomarker is discovered for a flesh-eating pathogen

Imagine a pathogen that infects completely healthy people and can cause blindness in one day and flesh-eating infections, brain abscesses and death in just a few days. Now imagine that this pathogen…

Photo

Enigmatic enzyme

How bacteria recover from antibiotics exposure

Beta-lactam antibiotics, including penicillin, are one of the most widely used classes of antibiotics in the world. Though they’ve been in use since the 1940s, scientists still don’t fully…

Photo

Odilorhabdin

A new class of antibiotics to combat drug resistance

Researchers from the University of Illinois at Chicago and Nosopharm, a biotechnology company based in Lyon, France, are part of an international team reporting on the discovery of a new class of…

Related products

Atlas Genetics - Atlas Genetics io system

Infectious diseases testing

Atlas Genetics - Atlas Genetics io system

Atlas Genetics Ltd
Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Siemens Healthineers – Versant HCV Genotype 2.0 Assay (LiPA)

Infectious Disease/Hepatitis

Siemens Healthineers – Versant HCV Genotype 2.0 Assay (LiPA)

Siemens Healthineers