Under the skin

Handheld scanner reveals vascularization in psoriasis patients

A newly developed tissue scanner allows looking under the skin of psoriasis patients. This provides clinically relevant information, such as the structure of skin layers and blood vessels, without the need for contrast agents or radiation exposure. A team of researchers from Helmholtz Zentrum München and the Technical University of Munich (TUM) recently introduced the technology in ‘Nature Biomedical Engineering’.

A newly developed tissue scanner allows looking under the skin of psoriasis...
A newly developed tissue scanner allows looking under the skin of psoriasis patients.
Source: Helmholtz Zentrum München

Psoriasis (Psoriasis vulgaris) is an inflammatory skin disease that is characterized by small to palm-sized patches of severely scaling skin. The disease is estimated to affect between ten and fifteen million people in the European Union. Currently, physicians evaluate the severity of the disease based on visual assessment of features of the skin surface, such as redness or thickness of the flaking skin. “Unfortunately, these standards miss all parameters that lie below the surface of the skin, and may be subjective,” Dr. Juan Aguirre points out. “Knowing the structure of the skin and vessels before treatment can provide the physician with useful information,” explains the group leader at the Institute of Biological and Medical Imaging (IBMI) at the Helmholtz Zentrum München.*

A look under the skin

In order to provide clinicians with this information, Aguirre and his team developed a new technique that gets under the skin. It bears the name RSOM (raster-scan optoacoustic mesoscopy) and works as follows: A weak laser pulse excites the tissue of interest, which then absorbs energy and heats up minimally. This causes momentary tissue expansion, which generates ultrasound waves. The scientists measure these ultrasound signals and use this information to reconstruct a high resolution image of what lies under the skin.

High tech that fits in the hand

While developing the method, the scientists were able to reduce the size of the scanner to a handheld device. “This technology, which is easy to use and does not involve any radiation exposure or contrast agent, is allowing us to acquire the first new insights into the disease mechanisms. It also facilitates treatment decisions for the physicians,” explains Prof. Dr. Vasilis Ntziachristos, Director of the IBMI at the Helmholtz Zentrum München and Chair of Biological Imaging at the Technical University of Munich.

In the recently published study, the scientists demonstrated RSOM’s performance by examining cutaneous and subcutaneous tissue from psoriasis patients. RSOM allowed them to determine several characteristics of psoriasis and inflammation, including skin thickness, capillary density, number of vessels, and total blood volume in the skin. They compiled these to define a novel clinical index for assessing psoriasis severity that may be superior to the current clinical standard because the new index also takes into account characteristics below the skin surface. The researchers plan to use the same imaging method to assess other diseases such as skin cancer or diabetes in the future. Patients with diabetes often suffer from damaged blood vessels that, if detected early enough, may allow earlier treatment and therefore greater efficacy.

*Psoriasis treatment depends on the severity of the disease and possible organ involvement, which the new technique can help assess in a non-invasive way, obtaining information that before could only be retrieved with painful, invasive biopsy.

 

Source: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

03.06.2017

Read all latest stories

Related articles

Photo

Curbing collaterals

High energy radiotherapy ‘paints’ tumours, avoids healthy tissue

A radiotherapy technique which ‘paints’ tumours by targeting them precisely, and avoiding healthy tissue, has been devised in research led by the University of Strathclyde. Researchers used a…

Photo

Regenerative medicine

Lab-grown ‘mini-bile ducts’ to repair human livers

Scientists have used a technique to grow bile duct organoids – often referred to as ‘mini-organs’ – in the lab and shown that these can be used to repair damaged human livers. This is the…

Photo

Freefrom Reversible Embedding of Suspended Hydrogels

A 'FRESH' way to 3D-print tissues and organs

Research into 3D bioprinting has grown rapidly in recent years as scientists seek to re-create the structure and function of complex biological systems from human tissues to entire organs. The most…

Related products

ASP Lab Automation – Tube Sorter SortPro

Sample Processing

ASP Lab Automation – Tube Sorter SortPro

ASP Lab Automation AG
Hamamatsu Photonics – NanoZoomer S210

Scanner

Hamamatsu Photonics – NanoZoomer S210

Hamamatsu Photonics Europe GmbH
Hamamatsu Photonics – NanoZoomer S360

Scanner

Hamamatsu Photonics – NanoZoomer S360

Hamamatsu Photonics Europe GmbH
Hamamatsu Photonics – NanoZoomer S60

Scanner

Hamamatsu Photonics – NanoZoomer S60

Hamamatsu Photonics Europe GmbH
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Subscribe to Newsletter