Example of fluorine 18 fluorodeoxyglucose PET images from Alzheimers Disease...
Example of fluorine 18 fluorodeoxyglucose PET images from Alzheimer's Disease Neuroimaging Initiative set preprocessed with the grid method for patients with Alzheimer disease (AD). One representative zoomed-in section was provided for each of three example patients: A, 76-year-old man with AD, B, 83-year-old woman with mild cognitive impairment (MCI), and, C, 80-year-old man with non-AD/MCI. In this example, the patient with AD presented slightly less gray matter than did the patient with non-AD/MCI. The difference between the patient with MCI and the patient with non-AD/MCI appeared minimal to the naked eyes.

Credit: RSNA

News • Artificial intelligence

AI predicts Alzheimer’s years before diagnosis

Using artificial intelligence, metabolic brain changes can be identified earlier leading to timely diagnosis and intervention of Alzheimer’s disease.

Timely diagnosis of Alzheimer’s disease is extremely important, as treatments and interventions are more effective early in the course of the disease. However, early diagnosis has proven to be challenging. Research has linked the disease process to changes in metabolism, as shown by glucose uptake in certain regions of the brain, but these changes can be difficult to recognize.

“Differences in the pattern of glucose uptake in the brain are very subtle and diffuse,” said study co-author Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California in San Francisco (UCSF). “People are good at finding specific biomarkers of disease, but metabolic changes represent a more global and subtle process.”

The study’s senior author, Benjamin Franc, M.D., from UCSF, approached Dr. Sohn and University of California, Berkeley, undergraduate student Yiming Ding through the Big Data in Radiology (BDRAD) research group, a multidisciplinary team of physicians and engineers focusing on radiological data science. Dr. Franc was interested in applying deep learning, a type of AI in which machines learn by example much like humans do, to find changes in brain metabolism predictive of Alzheimer’s disease.

Algorithm could aid radiologists

The researchers trained the deep learning algorithm on a special imaging technology known as 18-F-fluorodeoxyglucose positron emission tomography (FDG-PET). In an FDG-PET scan, FDG, a radioactive glucose compound, is injected into the blood. PET scans can then measure the uptake of FDG in brain cells, an indicator of metabolic activity.

The researchers had access to data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a major multi-site study focused on clinical trials to improve prevention and treatment of this disease. The ADNI dataset included more than 2,100 FDG-PET brain images from 1,002 patients. Researchers trained the deep learning algorithm on 90 percent of the dataset and then tested it on the remaining 10 percent of the dataset. Through deep learning, the algorithm was able to teach itself metabolic patterns that corresponded to Alzheimer’s disease.

Finally, the researchers tested the algorithm on an independent set of 40 imaging exams from 40 patients that it had never studied. The algorithm achieved 100 percent sensitivity at detecting the disease an average of more than six years prior to the final diagnosis. “We were very pleased with the algorithm’s performance,” Dr. Sohn said. “It was able to predict every single case that advanced to Alzheimer’s disease.”

Saliency map of deep learning model Inception V3 on the classification of...
Saliency map of deep learning model Inception V3 on the classification of Alzheimer disease. (a) A representative saliency map with anatomic overlay in 77-year-old man. (b) Average saliency map over 10 percent of Alzheimer’s Disease Neuroimaging Initiative set. (c) Average saliency map over independent test set. The closer a pixel color is to the "High" end of the color bar in the image, the more influence it has on the prediction of Alzheimer disease.

Credit: RSNA

Although he cautioned that their independent test set was small and needs further validation with a larger multi-institutional prospective study, Dr. Sohn said that the algorithm could be a useful tool to complement the work of radiologists—especially in conjunction with other biochemical and imaging tests—in providing an opportunity for early therapeutic intervention. “If we diagnose Alzheimer’s disease when all the symptoms have manifested, the brain volume loss is so significant that it’s too late to intervene,” he said. “If we can detect it earlier, that’s an opportunity for investigators to potentially find better ways to slow down or even halt the disease process.”

Future research directions include training the deep learning algorithm to look for patterns associated with the accumulation of beta-amyloid and tau proteins, abnormal protein clumps and tangles in the brain that are markers specific to Alzheimer’s disease, according to UCSF’s Youngho Seo, Ph.D., who served as one of the faculty advisors of the study. “If FDG-PET with AI can predict Alzheimer’s disease this early, beta-amyloid plaque and tau protein PET imaging can possibly add another dimension of important predictive power,” he said.

Source: Radiological Society of North America

28.11.2018

Read all latest stories

Related articles

Photo

News • For the first time

Similarity between schizophrenia and dementia dicovered

Researchers for the first time compared schizophrenia and frontotemporal dementia, disorders that are both located in the frontal and temporal lobe regions of the brain.

Photo

News • Machine learning

AI detects Alzheimer's in brain scans years before diagnosis

Using a common type of brain scan, researchers programmed a machine learning algorithm to diagnose early-stage Alzheimer's disease about six years before a clinical diagnosis is made – potentially…

Photo

News • Smart diagnostic support

Brain imaging: bringing CT up to par with MRI

A new AI method for CT brain imaging may bring the modality to the level of detail usually reserved for MRI scans. This could enhance diagnostic support for conditions such as Alzheimer's disease.

Related products

Subscribe to Newsletter