Having problems getting a good night's rest? Artificial intelligence might hold the answer, according to scientists.

Image source: Unsplash/Alexandra Gorn

The science of sleep

AI could enhance diagnosis and treatment of sleep disorders

Artificial intelligence (AI) has the potential to improve efficiencies and precision in sleep medicine, resulting in more patient-centered care and better outcomes, according to a new position statement from the American Academy of Sleep Medicine.

Published in the Journal of Clinical Sleep Medicine, the position statement was developed by the AASM’s Artificial Intelligence in Sleep Medicine Committee. According to the statement, the electrophysiological data collected during polysomnography — the most comprehensive type of sleep study — is well-positioned for enhanced analysis through AI and machine-assisted learning. “When we typically think of AI in sleep medicine, the obvious use case is for the scoring of sleep and associated events,” said lead author and committee Chair Dr. Cathy Goldstein, associate professor of sleep medicine and neurology at the University of Michigan. “This would streamline the processes of sleep laboratories and free up sleep technologist time for direct patient care.”

Photo
Sleep scientists are working on having AI algorithms analyzing the data in polysomnograms. Pictured: Polysomnography in a patient with obstructive sleep apnea (OSA)

Because of the vast amounts of data collected by sleep centers, AI and machine learning could advance sleep care, resulting in more accurate diagnoses, prediction of disease and treatment prognosis, characterization of disease subtypes, precision in sleep scoring, and optimization and personalization of sleep treatments. Goldstein noted that AI could be used to automate sleep scoring while identifying additional insights from sleep data. “AI could allow us to derive more meaningful information from sleep studies, given that our current summary metrics, for example, the apnea-hypopnea index, aren’t predictive of the health and quality of life outcomes that are important to patients,” she said. “Additionally, AI might help us understand mechanisms underlying obstructive sleep apnea, so we can select the right treatment for the right patient at the right time, as opposed to one-size-fits-all or trial and error approaches.”

Important considerations for the integration of AI into the sleep medicine practice include transparency and disclosure, testing on novel data, and laboratory integration. The statement recommends that manufacturers disclose the intended population and goal of any program used in the evaluation of patients; test programs intended for clinical use on independent data; and aid sleep centers in evaluation of AI-based software performance. “AI tools hold great promise for medicine in general, but there has also been a great deal of hype, exaggerated claims and misinformation,” explained Goldstein. “We want to interface with industry in a way that will foster safe and efficacious use of AI software to benefit our patients. These tools can only benefit patients if used with careful oversight.”


Source: American Academy of Sleep Medicine (AASM)

03.03.2020

Read all latest stories

Related articles

Photo

Machine learning

How intelligent is Artificial Intelligence?

Scientists put AI systems to the test und provide a glimpse into the diverse “intelligence” spectrum observed in current AI models.

Photo

Man against machine

AI is better than dermatologists at diagnosing skin cancer

Researchers have shown for the first time that a form of artificial intelligence or machine learning known as a deep learning convolutional neural network (CNN) is better than experienced…

Photo

Brain tumor treatment network

'Federated learning' AI approach allows hospitals to share patient data privately

To answer medical questions that can be applied to a wide patient population, machine learning models rely on large, diverse datasets from a variety of institutions. However, health systems and…

Related products

Atlas Genetics - Atlas Genetics io system

Infectious diseases testing

Atlas Genetics - Atlas Genetics io system

Atlas Genetics Ltd
DiaSys Diagnostic Systems - InnovaStar

Clinical chemistry

DiaSys Diagnostic Systems - InnovaStar

DiaSys Diagnostic Systems GmbH
Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Image Information Systems – iQ-4VIEW

Mobile RIS/PACS Viewer

Image Information Systems – iQ-4VIEW

IMAGE Information Systems Europe GmbH
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH