News • Research

Unravelling the mystery of non-alcoholic fatty liver disease

Another piece in the puzzle that is non-alcoholic fatty liver disease has been solved by a University of Queensland researcher in a step towards developing treatments for a disease that affects about one in every five Australians. PhD student Laurence Britton has discovered a pivotal mechanism by which iron is able to make the liver more vulnerable to the injury and metabolic dysfunction that precedes the disease.

University of Queensland

Photo
PhD student Laurence Britton, University of Queensland.
Source: University of Queensland

Faculty of Medicine Professor Darrell Crawford said Dr Britton’s discovery was an important step in combating a deadly time bomb that affected an estimated 5.5 million Australians. “With our growing obesity epidemic and no known cure for non-alcoholic fatty liver disease, an increasing number of people are sitting on a silent killer,” he said. “There may be symptoms such as fatigue, pain or weight loss – or no symptoms at all. The sufferer may not be aware that they have the disease until it has progressed to liver cirrhosis or liver cancer.“

Fatty liver disease involves an abnormal accumulation of fat, causing inflammation, scarring and an increased susceptibility to liver cancer. Previous research has shown that fat cells, iron and insulin are all major players in the disease, but the exact nature of their influence on each other has confounded medical researchers – until now.

Dr Britton found that iron reduced the availability of the protective hormone, ApoE, which is involved in fat regulation and insulin resistance. He said this finding provided another clue as to why obesity and type II diabetes are significant risk factors for non-alcoholic fatty liver disease, and gave researchers a target for future therapeutics. “Currently there is no standard treatment for the disease, with doctors instead treating the underlying conditions such as obesity and diabetes,” he said. “Understanding the modulating role of iron gives us a definite starting point from which to map the development of fatty liver dysfunction. Each element of dysfunction provides an opportunity to develop a new treatment to block the process and prevent disease progression.”

Source: University of Queensland

02.07.2018

More on the subject:
Read all latest stories

Related articles

Photo

News • Alternative to liver biopsy

Exploring the benefits of non-invasive MR Elastography in obese patients

Omar Darwish, PhD student at King's College London, is researching new approaches to 3D MRE sequences for measuring liver fibrosis and inflammation simultaneously in obese patients.

Photo

News • OrQA

Transplant organ quality assessment via AI: a promising approach

A pioneering new method to assess the quality of organs for donation has the potential to revolutionise the transplant system, saving lives and tens of millions of pounds.

Photo

News • HCC in vitro research

Organoids give new clues to liver cancer progression

Newly engineered in vitro tumour models open ways to better understand the crosstalk between liver cancer cells and their microenvironment, researchers from Singapore found.

Related products

Fujifilm Wako – Autokit Total Ketone Bodies Assay

Clinical Chemistry

Fujifilm Wako – Autokit Total Ketone Bodies Assay

FUJIFILM Wako Chemicals Europe GmbH
Fujifilm Wako – Hyaluronic Acid LT Assay

Clinical Chemistry

Fujifilm Wako – Hyaluronic Acid LT Assay

FUJIFILM Wako Chemicals Europe GmbH
Fujifilm Wako – NEFA-HR(2) Assay

Clinical Chemistry

Fujifilm Wako – NEFA-HR(2) Assay

FUJIFILM Wako Chemicals Europe GmbH
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030 CL (IVD)/ CLAM-2030 (RUO)

Mass Spectrometry

Shimadzu – CLAM-2030 CL (IVD)/ CLAM-2030 (RUO)

Shimadzu Europa GmbH
Subscribe to Newsletter