TOM-1 for the brain

This brain protein could put the brakes on Alzheimer’s

Biologists from the University of California, Irvine have made a major finding on combating inflammation linked to Alzheimer's disease.

The School of Biological Sciences researchers’ discovery about the role of a protein called TOM-1 heralds a shift toward examining the molecular underpinnings of Alzheimer’s processes. Their study appears online in Proceedings of the National Academy of Sciences. “Scientists have known for a long time that inflammation is a driver of Alzheimer’s disease, but inflammation is complex and involves many factors,” said School of Biological Sciences Dean Frank LaFerla, Ph.D., whose laboratory conducted the research. “That’s why we decided to look at TOM-1.”

Photo
Alessandra Martini and Frank LaFerla the UCI School of Biological Sciences led the study.
Source: UCI

The protein helps to regulate a key component of the inflammatory response. “We were interested in TOM-1 because its levels are low in the Alzheimer’s brain and in the brains of Alzheimer’s rodent models,” said Alessandra Martini, Ph.D., the paper’s first author and a postdoctoral researcher who worked with LaFerla. “However, its specific role in the disease has largely been unexplored.”

The scientists discovered that reducing the amount of TOM-1 in Alzheimer’s rodent models increased pathology, which included increased inflammation, and exacerbated cognitive problems associated with the disease. Restoring TOM-1 levels reversed those effects. “You can think of TOM-1 as being like the brakes of a car, and the brakes aren’t working for people with Alzheimer’s,” LaFerla said. “This research shows that fixing the brakes at the molecular level could provide an entirely new therapeutic avenue. With millions of people affected by Alzheimers and the numbers growing, we must research a diverse portfolio of approaches so we can one day vanquish this terrible disease.”


Source: University of California, Irvine

08.10.2019

Read all latest stories

Related articles

Photo

New insights into brain diseases

Inflammatory processes drive Alzheimer's progression

Inflammation drives the progression of neurodegenerative brain diseases and plays a major role in the accumulation of tau proteins within neurons. An international research team led by the German…

Photo

Dementia pathway

Is LATE the new Alzheimer’s?

A recently recognized brain disorder that mimics clinical features of Alzheimer’s disease has for the first time been defined with recommended diagnostic criteria and other guidelines for advancing…

Photo

Preventing toxic plaques

Key step forward in tackling neurodegenerative diseases

A protein complex has been shown to play a key role in preventing the build-up of toxic plaques in the brain linked to neurodegenerative disorders such as Alzheimer’s and Huntington’s disease. An…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH