Artificial polymer-based neural network. The strongly nonlinear behavior of...
Artificial polymer-based neural network. The strongly nonlinear behavior of these networks enables their use in reservoir computing.

© TU Dresden

News • Early detection and treatment of illnesses

Researchers develop implantable AI system

Artificial intelligence (AI) will fundamentally change medicine and healthcare: Diagnostic patient data, e.g. from ECG, EEG or X-ray images, can be analyzed with the help of machine learning, so that diseases can be detected at a very early stage based on subtle changes.

However, implanting AI within the human body is still a major technical challenge. TU Dresden scientists at the Chair of Optoelectronics have now succeeded for the first time in developing a bio-compatible implantable AI platform that classifies in real time healthy and pathological patterns in biological signals such as heartbeats. It detects pathological changes even without medical supervision. The research results have now been published in the journal ‘Science Advances’.

This approach will make it possible to develop further intelligent systems in the future that can help save human lives

Matteo Cucchi

In this work, the research team led by Prof. Karl Leo, Dr. Hans Kleemann and Matteo Cucchi demonstrates an approach for real-time classification of healthy and diseased bio-signals based on a biocompatible AI chip. They used polymer-based fiber networks that structurally resemble the human brain and enable the neuromorphic AI principle of reservoir computing. The random arrangement of polymer fibers forms a so-called "recurrent network," which allows it to process data, analogous to the human brain. The nonlinearity of these networks enables to amplify even the smallest signal changes, which - in the case of the heartbeat, for example - are often difficult for doctors to evaluate. However, the nonlinear transformation using the polymer network makes this possible without any problems.

In trials, the AI was able to differentiate between healthy heartbeats from three common arrhythmias with an 88% accuracy rate. In the process, the polymer network consumed less energy than a pacemaker. The potential applications for implantable AI systems are manifold: For example, they could be used to monitor cardiac arrhythmias or complications after surgery and report them to both doctors and patients via smartphone, allowing for swift medical assistance. "The vision of combining modern electronics with biology has come a long way in recent years with the development of so-called organic mixed conductors," explains Matteo Cucchi, PhD student and first author of the paper. "So far, however, successes have been limited to simple electronic components such as individual synapses or sensors. Solving complex tasks has not been possible so far. In our research, we have now taken a crucial step toward realizing this vision. By harnessing the power of neuromorphic computing, such as reservoir computing used here, we have succeeded in not only solving complex classification tasks in real time but we will also potentially be able to do this within the human body. This approach will make it possible to develop further intelligent systems in the future that can help save human lives." 


Source: TU Dresden

20.08.2021

Read all latest stories

Related articles

Photo

News • Monitoring technology

AI to detect Parkinson’s from breathing patterns

A device with the appearance of a Wi-Fi router uses a neural network to discern the presence and severity of one of the fastest-growing neurological diseases in the world: Parkinson's.

Photo

Article • Targeted Real-time Early Warning System for hospitals

Early detection of sepsis with the help of AI

Sepsis, a life-threatening, systemic, toxic bodily reaction to infection, is often difficult to detect in its early stages. Its symptoms, including fever, shortness of breath, rapid heart rate, and…

Photo

News • Risk factor identification

AI to speed up sepsis detection

Patients are 20% less likely to die of sepsis because a new AI system developed at Johns Hopkins University catches symptoms hours earlier than traditional methods, an extensive hospital study shows.

Related products

Agfa HealthCare – Rubee for AI

Artificial Intelligence

Agfa HealthCare – Rubee for AI

Agfa HealthCare
Beckman Coulter – Psychiatry Antipsychotic Assays

Clinical Chemistry

Beckman Coulter – Psychiatry Antipsychotic Assays

Beckman Coulter Diagnostics
Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon – Aquilion Lightning

20 to 64 Slices

Canon – Aquilion Lightning

Canon Medical Systems Europe B.V.
Canon – Aquilion Lightning SP

Volume CT

Canon – Aquilion Lightning SP

Canon Medical Systems Europe B.V.
Subscribe to Newsletter