The new material could be used to develop devices that convert blood pressure...
The new material could be used to develop devices that convert blood pressure into a power source for pacemakers.

Source: Adobe Stock/SciePro

News • Self-powered electronics

Nano-sized generator protects the heart

A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats. The flexible and printable piezoelectric material, which can convert mechanical pressure into electrical energy, has been developed by an Australian research team led by RMIT University.

It is 100,000 times thinner than a human hair and 800% more efficient than other piezoelectrics based on similar non-toxic materials. Importantly, researchers say it can be easily fabricated through a cost-effective and commercially scalable method, using liquid metals.

Lead researcher Dr Nasir Mahmood said the material, detailed in a new Materials Today study, was a major step towards realising the full potential of motion-driven, energy-harvesting devices. “Until now, the best performing nano-thin piezoelectrics have been based on lead, a toxic material that is not suitable for biomedical use,” Mahmood, a Vice-Chancellor’s Research Fellow in the School of Engineering at RMIT, said. 

“Our new material is based on non-toxic zinc oxide, which is also lightweight and compatible with silicon, making it easy to integrate into current electronics. “It’s so efficient that all you need is a single 1.1 nanometre layer of our material to produce all the energy required for a fully self-powering nanodevice.”

The material’s potential biomedical applications include internal biosensors and self-powering biotechnologies, such as devices that convert blood pressure into a power source for pacemakers. The nano-thin piezoelectrics could also be used in the development of smart oscillation sensors to detect faults in infrastructure like buildings and bridges, especially in earthquake-prone regions.

Examples of energy-harvesting technologies that could be delivered by integrating the new material include smart running shoes for charging mobile phones and smart footpaths that harness energy from footsteps.

A magnified image showing nano-thin sheets of the new type of ultra-efficient,...
A magnified image showing nano-thin sheets of the new type of ultra-efficient, flexible and printable piezoelectric material.

Source: RMIT University

Flexible nanogenerator: how the material is made

The new material is produced using a liquid metal printing approach, pioneered at RMIT. 

Zinc oxide is first heated until it becomes liquid. This liquid metal, once exposed to oxygen, forms a nano-thin layer on top – like the skin on heated milk when it cools. The metal is then rolled over a surface, to print off nano-thin sheets of the zinc oxide “skin”.

The innovative technique can rapidly produce large-scale sheets of the material and is compatible with any manufacturing process, including roll-to-roll (R2R) processing.

The researchers are now working on ultrasonic detectors for use in defence and infrastructure monitoring, as well as investigating the development of nanogenerators for harvesting mechanical energy. “We’re keen to explore commercial collaboration opportunities and work with relevant industries to bring future power-generating nanodevices to market,” Mahmood said.

Source: RMIT University

26.01.2021

Read all latest stories

Related articles

Photo

Article • Wearables at Medica 2022

Smart ring medical device for 24/7 blood pressure monitoring

A smart-ring medical device is emerging as an effective and discreet wearable for round-the-clock blood pressure monitoring. Using photoplethysmography (PPG) signals to measure the bloodstream 24/7…

Photo

News • Smart device

Dissolving pacemaker communicates with body-area sensor

Wireless bioresorbable pacemaker bypasses need to extract non-biodegradable leads, eliminating additional risk to the patient.

Photo

Article • Wearable technology

Smart textiles to help detect heart conditions

Smart textiles with built-in sensors and transmitters present themselves as a diagnostic solution as they can monitor heart rhythm over long periods and thus pick up on potential Atrial Fibrillation.

Related products

Canon – Alphenix Biplane High Definition Detector

Bi-Plane

Canon – Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Canon – Alphenix Core

Single Plane

Canon – Alphenix Core

Canon Medical Systems Europe B.V.
Canon – Alphenix Core+

Single Plane

Canon – Alphenix Core+

Canon Medical Systems Europe B.V.
Canon – Alphenix Core+ High Definition Detector

Single Plane

Canon – Alphenix Core+ High Definition Detector

Canon Medical Systems Europe B.V.
Canon – Vitrea Advanced Visualization

Reading

Canon – Vitrea Advanced Visualization

Canon Medical Systems Europe B.V.
Subscribe to Newsletter