The operating room produces 70% of hospitals greenhouse gas emissions, but two...
The operating room produces 70% of hospitals' greenhouse gas emissions, but two surgeons-in-training have come up with solutions to reduce that number.

Credit: Jacob Dwyer/Michigan Medicine

News • Greenhouse gas emissions

Operating rooms: the climate change contributor no one’s talking about

Two surgeons-in-training suggest some sustainable solutions for their energy-intensive discipline.

In April 2021, during the Leaders Summit on Climate, US President Joe Biden announced his goal to drastically reduce the United States’ greenhouse gas emissions by 2030. Victor Agbafe was watching the address on TV. The University of Michigan Medical School student, who is also studying law at Yale, immediately texted a few mentors, including Michigan Medicine integrated plastic surgery resident Nicholas Berlin, M.D., M.P.H., M.S.

The question that emerged from their messages was a crucial one: What role can the medical community, which accounts for about 8.5% of America’s greenhouse gas emissions, play in these climate change reduction efforts?

One of the most feasible changes to make in this space would be around waste reduction, Agbafe said.

This might be as simple as making sure that anything thrown away before or during surgery is properly categorized and labeled since it’s estimated that over 90% of OR waste does not meet the necessary standards for the type of trash it ends up in. (The red waste bags in ORs are intended only for items that have been exposed to bodily fluids and are much more expensive to dispose of than clear disposal bags.)

Hospitals could also consider switching to some reusable or reprocessed devices and surgical gowns since there is no link between reused tools and hospital-acquired infections.

Some of the pair’s other suggestions involve optimizing ORs’ energy use. Agbafe and Berlin point to the American Society of Healthcare Engineering’s recommendations to install energy-efficient lighting, schedule preventive maintenance and minimize air flow into rooms that aren’t being used as easy ways to green the systems.

The surgical supply chain could be more efficient, too, they write. Estimates suggest that 87% of the surgical instruments laid out for an operation are rarely used, so coming up with standardized lists of the necessary tools for surgeries that occur regularly could cut down on cost, waste and the energy needed to sterilize and repackage those instruments.

Moving more manufacturing of surgical supplies closer to hospitals — or choosing to source from suppliers that are locally based — could also reduce the OR’s carbon footprint.

“Given some of the geopolitical events that have been going on right now in Ukraine and with China and the competition there along with the effects of pandemic is creating an increasing emphasis on resiliency within supply chains,” Agbafe said. “So this idea of localizing our operating room supply chains is something that there’s a lot of political energy and momentum within the public to move towards.”

But perhaps the broadest way the oncology space could cut down on its greenhouse gas emissions is to change how surgical care is delivered, starting with permanently offering telemedicine.

“We think telemedicine is a great opportunity for us to lower the climate impact and improve the quality of care by doing so,” Agbafe said. “During the pandemic, we’ve been using virtual care and if we could make that a routine aspect of cancer care for pre-op and post-op, that’s a way we can reduce the climate impact of delivering care and make it more convenient for patients.”

Reducing low-value care is another way to eliminate carbon-producing activities associated with unnecessary scans, testing and procedures. This has been a priority for U-M, thanks to the Michigan Program on Value Enhancement — a collaboration of Michigan Medicine and the University of Michigan Institute for Healthcare Policy that aims to improve the quality of care at the institution — and a partnership with the similarly oriented Michigan Value Collaborative, also referred to as MVC, a collaborative quality initiative that serves the entire state.

Last year, the two organizations collaborated on a study that highlighted how much routine testing was still done before surgeries despite its low value. Berlin was the first author. “U-M is considered one of the leading institutions studying low-value care and efforts to limit that type of care,” Berlin said. “But like a lot of other centers, we are really just at the precipice of these initiatives. I would anticipate big changes in the next 10 years.”

Some sustainability shifts may come even sooner at Michigan Medicine. For instance, the Department of Anesthesiology recently launched the Green Anesthesia Initiative, or GAIA for short. Its mission: become more environmentally conscious about the types and rates of anesthesia its providers use, another area Agbafe and Berlin say is ripe for improvement.

“This is a topic of fairly intense discussion right now in the field, and I’ve been thinking about it for a while,” said George Mashour, M.D., Ph.D., the chair of the Department of Anesthesiology and the Robert B. Sweet Professor of Anesthesiology at the University of Michigan Medical School. “Unlike other industries, I don't think that we require massive disruption in order to make progress because, fortunately, we have options.”

Several inhaled gases regularly used for anesthesia are A-list offenders when it comes to greenhouse gas production. Nitrous oxide, commonly known as laughing gas, is a greenhouse gas, a direct ozone depleter and does not dissipate from the atmosphere for more than a century after it’s produced.

However, the inhaled anesthetic sevoflurane has much less of an environmental impact than nitrous oxide and other common inhaled agents, so Mashour says it would be a good alternative.

“The overall goal is to shift away from some of these egregious culprits and start making better choices about which drug we use and then also how we use it,” Mashour said. “The contributions in terms of greenhouse gas effect or ozone-depleting action partly relate to how much is getting pumped out into the atmosphere and that relates directly to how high we have our fresh gas flow,” he added. “If we have, for example, 10 liters going, we’re blowing a lot of anesthetic into the scavenging and waste and atmospheric systems that doesn’t need to be there.”

To that end, Mashour’s colleagues in the Department of Anesthesiology are already leading a national initiative to try to reduce anesthetic gas flow rates through the Multicenter Perioperative Outcomes Group, another quality initiative that includes health centers from across the country.

Mashour plans to roll out other elements of GAIA over a three- to- five-year period. “We could be doing better,” he said. “Right now, we’re starting the conversations, getting people on board and making structural choices in the department to help make it easy for people to do the right thing.”

Source: Michigan Medicine - University of Michigan

15.05.2022

Read all latest stories

Related articles

Photo

Interview • Drones or data cables?

Are humans too slow for digitalisation?

Today the impressive development of drones by some people is happily regarded as the pinnacle of digitalisation in healthcare. Some groups are testing whether drones can quickly and safely deliver…

Photo

Article • Futuristic

Humber River Hospital is oh so smart

‘Humber River Hospital, Toronto, Canada, could come straight out of a science fiction series that provides Star Trek-like healthcare services with hall-cruising robots delivering food, medications…

Photo

Article • Thoracic surgery

Stringent medical risk management

The precise number of adverse clinical events is difficult to ascertain. Several international studies estimate that medical errors happen in 3-5% of all hospital treatments and that around 30-50% of…

Related products

Canon Electron Tubes & Devices – X-ray Image Intensifier

Accessories / Complementary Systems

Canon Electron Tubes & Devices – X-ray Image Intensifier

Canon Electron Tubes & Devices Co., Ltd
CliniSys – Order & Results Management

LIS / Middleware / POCT

CliniSys – Order & Results Management

CliniSys | MIPS Deutschland GmbH
DK Medical – Prostar

Surgical II-C-Arms

DK Medical – Prostar

DK Medical Systems Co., Ltd
Fujifilm - FDX Visionary-C and CS

Surgical Flat Panel C-arms

Fujifilm - FDX Visionary-C and CS

FUJIFILM Europe GmbH
Fujifilm – Synapse 3D

Reading

Fujifilm – Synapse 3D

FUJIFILM Europe GmbH
GMM – Symbol FP – Mobile C-Arm system

Surgical Flat Panel C-Arms

GMM – Symbol FP – Mobile C-Arm system

General Medical Merate S.p.A. (GMM Group)
Subscribe to Newsletter