Tryphon Georgiou, left, UCI Distinguished Professor of mechanical and aerospace...
Tryphon Georgiou, left, UCI Distinguished Professor of mechanical and aerospace engineering, worked with postdoctoral scholar Amirhossein Taghvaei, right, on a project concluding that the use of fractional exponents in epidemiological models produces more accurate predictions about the spread of infectious diseases, especially in the early stages of the epidemic.

Source: Steve Zylius / UCI

News • Fractional exponents

New approach for more accurate epidemic modeling

A new class of epidemiological models based on alternative thinking about how contagions propagate, particularly in the early phases of a pandemic, provide a blueprint for more accurate epidemic modeling and improved disease spread predictions and responses, according to a study by researchers at the University of California, Irvine and other institutions.

In the paper published in Scientific Reports , the scientists said that standard epidemic models incorrectly assume that the rate in which an infectious disease spreads depends on a simple product of the number of infected and susceptible people. The authors instead suggest that transmission happens not through complete mingling of entire populations but at the boundary of sub-groups of infected individuals.

“Standard epidemiological models rely on the presumption of strong mixing between infected and non-infected individuals, with widespread contact between members of those groups,” said co-author Tryphon Georgiou, UCI Distinguished Professor of mechanical and aerospace engineering. “We stress, rather, that transmission occurs in geographically concentrated cells. Therefore, in our view, the use of fractional exponents helps us more accurately predict rates of infection and disease spread.”

The researchers proposed a “fractional power alternative” to customary models that takes into account susceptible, infected and recovered populations. The value of the exponents in these fractional (fSIR) models depends on factors such as the nature and extent of contact between infected and healthy sub-populations.

The authors explained that during the initial phase of an epidemic, infection proceeds outwards from contagion carriers to the general population. Since the number of susceptible people is much larger than that of the infected, the boundary of infected cells scales at a fractional power of less than one of the area of the cells.

Photo
Source: Tryphon Georgiou / UCI

The researchers tested their theory through a series of numerical simulations. They also fitted their fractional models to actual data from Johns Hopkins University Center for Systems Science and Engineering. Those data covered the first few months of the COVID-19 pandemic in Italy, Germany, France and Spain. Through both processes they found the exponent to be in the range of .6 and .8.

When presented on a graph, data from Johns Hopkins University of infection rates in Italy during the first few months of the COVID-19 pandemic show the change in the number of infected individuals and subsequent growth of the epidemic. This trajectory matches a fractional power of the infected sub-population at different times during the epidemic progression. 

“The fractional exponent impacts in substantially different ways how the epidemic progresses during early and later phases, and as a result, identifying the correct exponent extends the duration over which reliable predictions can be made as compared to previous models,” Georgiou said.

In the context of the current COVID-19 pandemic, better knowledge about propagation of infections could aid in decisions related to the institution of masking and social distancing mandates in communities. “Accurate epidemiological models can help policy makers choose the right course of action to help prevent further spread of infectious diseases,” Georgiou said.


Source: University of California, Irvine

10.12.2020

More on the subject:
Read all latest stories

Related articles

Photo

News • Corona and co

How the sun impacts the spread of viral respiratory diseases

Why do most viral epidemics spread cyclically in autumn and winter in the globe's temperate regions? The answer is intimately related to our sun.

Photo

News • Outbreak

A genome browser posts the coronavirus genome

Research into the novel Wuhan seafood market pneumonia virus, the deadly "coronavirus" that has forced the Chinese government to quarantine more than 50 million people in the country's…

Photo

News • Immunological improvement

How long is long Covid? New research hints at timeframe

New research provides cause for optimism that long Covid can resolve over time. Following people from the first wave of Covid-19, it monitored the longevity of immune abnormalities after an infection.

Related products

Subscribe to Newsletter