Artificial heart tissue pulled onto plastic rods to measure its elasticity

© M. Gotthardt, MDC

Synthetic nucleic acid

New approach could help weak hearts

Heart failure with preserved ejection fraction was previously considered largely untreatable. A research team at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) led by Professor Michael Gotthardt has now succeeded for the first time in improving cardiac function with the help of a synthetic nucleic acid.

The researchers report in the journal Science Translational Medicine.

Patients with heart failure often have shortness of breath and become fatigued quickly. They frequently suffer from water retention, heart palpitations, and dizziness. The condition can be triggered by a combination of elevated blood pressure, diabetes, and kidney disease, or by acute events such as heart attacks or infections. As people age the number of adverse factors increase, so heart failure primarily affects older people, especially women. 

Although the symptoms are similar, there are various causes. In one form of the condition the pumping function of the heart is impaired. This can however be improved with widely available medication. In the other form, the heart pumps with adequate force, but the chambers of the heart – the ventricles – fail to fill properly because the ventricular walls become thickened or stiff. There is currently no effective therapy for this form of heart failure. Together with colleagues from Heidelberg University and the California-based company Ionis Pharmaceuticals a team led by Professor Michael Gotthardt of the MDC has now developed a therapeutic agent to improve the treatment of heart failure with preserved ejection fraction.

Victor Badillo Lisakowski (left) and Dr. Michael Radke from Professor Michael...
Victor Badillo Lisakowski (left) and Dr. Michael Radke from Professor Michael Gotthardt's Lab "Neuromuscular and Cardiovascular Cell Biology". On the screen: Original data from ultrasound examination of the mouse heart with and without treatment.

© M. Gotthardt, MDC

The mechanics of the heart depend on an elastic giant protein called titin. It is produced by heart muscle cells in distinct variants or isoforms that differ in their flexibility. While very elastic titin proteins predominate in infants, later when growth and remodeling are completed, stiffer titin isoforms are produced to increase pumping efficiency. In heart failure with preserved ejection fraction, thickened heart walls, intercalated connective tissue, and stiffer titin filaments may lead to impaired filling of the ventricles. 

Heart muscle cells are virtually unable to renew themselves in adults. Yet the constant pumping activity of the heart muscle puts such severe strain on titin that the worn-out proteins must be broken down and replaced every three to four days. “The mechanical properties of titin proteins are difficult to adjust,” says Gotthardt. “But we can now intervene in the process preceding protein synthesis – that is alternative splicing.” Alternative splicing is a clever trick that nature has devised to create a variety of similar proteins based on a single gene – including the different forms of titin. This process is controlled by splicing factors. “One of these, the master regulator RBM20, is a suitable target that we can address therapeutically,” explains Gotthardt.

These tests on artificial heart tissue were an important step, because the primary sequences for titin are not identical in mice and humans

Michael Radke

RBM20 determines the elastic, contractile, and electrical properties of the heart chambers. That it is indeed the decisive factor was shown in preliminary experiments with mice that, due to a deletion, can produce only half as much RBM20 as normal mice: In the deficient mice, there was a shift to more elastic titin isoforms. Together with the Ionis researchers, the scientists now began looking for a way to influence RBM20. “We were surprised at how easily this could be done,” says Gotthardt – namely with antisense oligonucleotides (ASOs). These are short chains of single-stranded nucleic acids that are synthetically produced. They bind specifically to the complementary RNA sequence, the blueprint of the targeted protein, thereby blocking its synthesis. 

Dr. Michael Radke, a lead author of the study, first successfully tested the ASOs in mice with stiffer heart walls. His colleague Victor Badillo Lisakowski then grew heart muscle cells derived from human stem cells into artificial heart tissue. The tiny 3D structures can be stimulated to contract and relax when they encounter resistance, enabling them to mimic the pumping action of the heart. This artificial heart tissue also showed what effect the treatment had: The researchers were able to demonstrate that the ASO molecules actually penetrate the cells and trigger the desired response. “These tests on artificial heart tissue were an important step, because the primary sequences for titin are not identical in mice and humans,” says Radke.

Victor Badillo Lisakowski grew heart muscle cells from human stem cells and...
Victor Badillo Lisakowski grew heart muscle cells from human stem cells and used them to grow artificial heart tissue

© M. Gotthardt, MDC

For the first time, antisense oligonucleotides have been successfully used to therapeutically influence alternative splicing in cardiac disease. The Ionis researchers were able to stabilize the sensitive molecule in such a way that it reaches the striated muscles in the mouse model and is not already degraded in the blood, liver, or eliminated by the kidneys. Most of it winds up in the heart, with some entering the skeletal muscle. “In the mouse model, however, we observed that it has no disruptive effect if increased amounts of elastic titin are formed in skeletal muscle,” stresses Radke. 

Heart failure is a chronic disease that requires long-term treatment. “So we treated our mice over a longer period of time and were able to see lasting treatment effects,” says Gotthardt. The therapeutic approach still needs some work, he says, adding: “An improvement over a weekly injection, which many patients are already familiar with from insulin or heparin, would be oral administration.”

Source: Max Delbrück Center for Molecular Medicine in the Helmholtz Association 


Read all latest stories

Related articles


Revealed via new x-ray technique

Covid-19 can cause vascular damage to the heart

Using a new x-ray imaging approach, an interdisciplinary research team has detected significant changes in the heart muscle tissue of people who died from Covid-19.


Cardiology research

Transcatheter aortic valve replacement: new insights on life expectancy

Researchers at Karolinska Institutet have examined long-term outcomes in patients who received pacemaker implantations after transcatheter aortic valve replacement (TAVR) through their groin. The…


Cardiology research

Dynamic heart model gives insight into cardiac disease progression

Efforts to understand cardiac disease progression and develop therapeutic tissues that can repair the human heart are just a few areas of focus for the Feinberg research group at Carnegie Mellon…

Related products

Alsachim – Dosinaco anticoagulant reagent kit (RUO)

Clinical Chemistry

Alsachim – Dosinaco anticoagulant reagent kit (RUO)

Alsachim, a Shimadzu Group Company
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

Subscribe to Newsletter