Klotho (green) is expressed around an injury site in muscle tissue (red) in...
Klotho (green) is expressed around an injury site in muscle tissue (red) in young mice.

Credit: Sahu et al. (2018), Nature Communications

Klotho

Could a ’longevity protein’ be the key to rejuvenating muscles?

One of the downsides to getting older is that skeletal muscle loses its ability to heal after injury. New research from the University of Pittsburgh implicates the so-called “longevity protein” Klotho, both as culprit and therapeutic target.

We saw functional levels of muscle regeneration in old animals that paralleled those of their young counterparts, suggesting that this could potentially be a therapeutic option down the road

Fabrisia Ambrosio

The paper, published this week in Nature Communications, showed that, in young animals, Klotho expression soars after a muscle injury, whereas in old animals, it remains flat. By raising Klotho levels in old animals, or by mitigating downstream effects of Klotho deficiency, the researchers could restore muscle regeneration after injury. “We found that we were able to rescue, at least in part, the regenerative defect of aged skeletal muscle,” said lead author Fabrisia Ambrosio, Ph.D., director of rehabilitation for UPMC International, associate professor of physical medicine and rehabilitation at Pitt, and core faculty at the McGowan Institute of Regenerative Medicine. “We saw functional levels of muscle regeneration in old animals that paralleled those of their young counterparts, suggesting that this could potentially be a therapeutic option down the road.”

Photo
In young muscle, high levels of Klotho maintain mitochondia, which aids regeneration after injury. Age-related declines of Klotho lead to mitochondrial damage and impaired healing.
Source: Sahu et al. (2018), Nature Communications

Suspecting that Klotho acts through mitochondria dysfunction, the researchers gave Klotho-deficient animals a mitochondria-targeting drug called SS-31, which currently is in phase III clinical trials. Treated animals grew more new muscle tissue at the site of injury compared to untreated controls, and their strength after recovery rivaled that of genetically normal mice. 

Similarly, injecting Klotho into older animals a few days after injury resulted in greater muscle mass and better functional recovery than their saline-treated counterparts. Normal, healthy mice did not benefit from SS-31 after injury. Clinically, these findings could translate to older adults who either sustained a muscle injury or underwent muscle-damaging surgery. Giving them Klotho at the appropriate timepoint could boost their muscle regeneration and lead to a more complete recovery.

Ambrosio cautions that the timing, dosage and route of administration will require future research. “If you just bombard the muscle with Klotho, we do not expect to observe any functional benefit,” Ambrosio said. “We’ve found that mimicking the timing profile we see in young animals seems to be critical. We think that this gives some insight into the therapeutic window.”


Source: Health Sciences at the University of Pittsburgh

23.11.2018

Read all latest stories

Related articles

Photo

Algorithmic enhancement

Improved MRI scans could aid in development of arthritis treatments

An algorithm that analyses MRI images and automatically detects small changes in knee joints over time could be used in the development of new treatments for arthritis. A team of engineers,…

Photo

Bone cement research

Developing self-healing bone replacements

Our body is able to treat many injuries and wounds all by itself. Self-healing powers repair skin abrasions and enable bones to grow back together. However, doctors often have to lend a helping hand…

Photo

Skeletal reconstruction

New stem cells discovery could pave the way to generate new bone

A population of stem cells with the ability to generate new bone has been newly discovered by a group of researchers at the University of Connecticut (UConn) School of Dental Medicine. In the journal…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH