Computers make prosthetic legs fit better

Report: Dot M McSherry, i.t. Communications

The fit of a prosthetic leg is a vital element in determining how well an amputee will function and adapt to the device. Historically, this has been a time-consuming art performed by skilled prosthetists. Today, computers have added science to the mix.

The Compas has embedded sensors (Courtesy: Orthocare Innovations)
The Compas has embedded sensors (Courtesy: Orthocare Innovations)

The Compas has embedded sensors (Courtesy: Orthocare Innovations)
The Compas has embedded sensors (Courtesy: Orthocare Innovations)

Prosthetic devices are not compatible with the physiology of the human body. Their limitations require regular adjust to accommodate for changes in an amputee's size and body volume, as well as changes in gait as they become more adept at using a prosthesis.

A real–time gait analysis system using a combination of hardware and software is one such innovation. The Computerised Prosthesis Alignment System – or Compas – consists of a device with embedded sensors that attaches to a prosthetic limb and measures gait, balance and other dynamic forces while an amputee is standing or walking on any type of terrain at any speed. It uses wireless technology to transmit this information to an automatic gait analysis software loaded on a personal computer.

The data is analysed, and a sophisticated computer model predicts whether a prosthetic device is misaligned, and if so, how it is misaligned. This is calculated through kinetic measurement analysis. The system shows the prosthetist precisely what is happening biomechanically, and recommendations are provided in easy-to-follow format. The prosthetist makes adjustments with a wrench.

The system’s hardware consists of a metal plate installed near the socket of the prosthesis (image 1) and a diagnostic module that attaches to it (photo 2). The plate has silicon strain gauges to measure various forces going through the prosthetic device and electronics and memory to enable this information to be converted into digital format and stored. When a patient visits a prosthetist to have adjustments made, the diagnostic module is attached to the plate. It projects a line on the floor or ground as a patient walks, and a gyroscope measures the rotation of the limb.

Compas technology is based on direct measurement of socket reactions, and uses a database of over seven million data points that measure exactly how socket reactions change with alignment alterations. The system is based on the theory that a prosthesis could be aligned in a consistent way if observed performance and sensations could be captured and measured while a patient was walking.

The company designing this technology is Orthocare Innovations, with offices in Oklahoma City, Oklahoma and Seattle, Washington. Founded in 2006, it developed the system with grant assistance from the U.S. National Institutes of Health and the U.S. National Centre for Medical Rehabilitation Research. When the product began to be commercially sold in 2009, Compas was named as one of the 100 most technologically significant products of the year by R & D Magazine.

Prosthetists have reported that the system makes the process of fitting a limb faster and easier for themselves and for the patient. However, expertise is still needed to achieve an optimum fit for a patient. It’s just that art of fit is now being combined with science.

21.05.2010

More on the subject:

Related articles

Photo

News • Tissue anchoring mechanism

Hooked: researchers design tapeworm-inspired medical device

US engineers turned to the world of parasites as inspiration to affix small-scale medical devices to the GI tract or other soft tissues for sensing, sample collection, and extended drug release.

Photo

Article • Experts explore the future of CSP, CRT, ICD

Implantable cardiac devices: which techniques are ready for prime time?

Opposing views on new implantable cardiac devices were aired in a Great Debate session at the European Society of Cardiology’s annual 2024 congress in London. Experts discussed emerging techniques…

Photo

Sponsored • Beyond average

A technological solution for preventing device-detected subclinical AF?

As pharmacological options for subclinical Atrial Fibrillation and atrial high-rate episodes continue to run into challenges, new research suggests more physiological pacing solutions can help reduce…

Related products

Subscribe to Newsletter