Graduate student Ram Gona designed a 3D bioprinter that creates biofilms using...
Graduate student Ram Gona designed a 3D bioprinter that creates biofilms using a technique developed by University of Rochester biology professor Anne S. Meyer and her collaborators at Delft University of Technology in the Netherlands.

Image source: University of Rochester / J. Adam Fenster

Microbiology

Using 3D printing technique to create biofilms

Anne S. Meyer, an associate professor of biology at the University of Rochester, and her collaborators at Delft University of Technology in the Netherlands, recently developed a 3D printing technique to engineer and study biofilms—three-dimensional communities of microorganisms, such as bacteria, that adhere to surfaces.

The research provides important information for creating synthetic materials and in developing drugs to fight the negative effects of biofilms. The researchers published their findings in the journal ACS Synthetic Biology.

Photo
Through single nozzle printing of bio-ink onto an LB-agar plate, the Meyer Lab can synthetically engineer and study biofilms made of Escherichia coli (E. coli) bacteria.

Image source: University of Rochester / J. Adam Fenster

Biofilms can be both harmful and beneficial to humans: they can coat the surfaces of materials and objects, including medical devices, and cause infections, and they are resistant to many drugs and disinfectants. However, biofilms are able to degrade toxic chemicals and environmental pollutants, making them useful in areas such as wastewater treatment. 

In their latest research, Meyer and her colleagues show that engineered biofilms can behave like natural ones. The researchers developed a 3D printing technique that allows them to synthetically engineer and study biofilms made of Escherichia coli (E. coli) bacteria. The technique will allow researchers to better study the properties of biofilms so they can harness their beneficial aspects and combat their harmful effects. “This paper shows that our engineered biofilms can behave like native biofilms in many ways—including displaying emergent drug resistance—making them good model systems for anti-biofilm drug development,” Meyer says. 


Source: University of Rochester

05.12.2021

Read all latest stories

Related articles

Photo

Sharper than ever

High-res image of bacterial bumps gives clues to antibiotic resistance

The sharpest images ever of living bacteria have been recorded by researchers at University College London, revealing the complex architecture of the protective layer that surrounds many bacteria and…

Photo

Resistance mechanism discovered

How staphylococci protect themselves against antibiotics

The skin bacterium Staphylococcus aureus often develops antibiotic resistance. It can then cause infections that are difficult to treat. Researchers at the University of Bonn have uncovered an…

Photo

Altered bacterial function

Accumulation of drugs in the gut may reduce their effectiveness

Common medications can accumulate in gut bacteria, a new study has found, altering bacterial function and potentially reducing the medications’ effectiveness. These interactions - seen for many…

Related products

Agfa HealthCare – Drystar 5301

Printer

Agfa HealthCare – Drystar 5301

Agfa HealthCare
Agfa HealthCare – Drystar 5302

Printers

Agfa HealthCare – Drystar 5302

Agfa HealthCare
Agfa HealthCare – Drystar 5503

Printers

Agfa HealthCare – Drystar 5503

Agfa HealthCare
Agfa HealthCare – Drystar Axys

Printers

Agfa HealthCare – Drystar Axys

Agfa HealthCare
Associates of Cape Cod – Fungitell STAT Assay

Identification/Susceptibility

Associates of Cape Cod – Fungitell STAT Assay

Associates of Cape Cod Europe GmbH
Canon – Artemis

Tomosynthesis

Canon – Artemis

Canon Medical Systems Europe B.V.
Subscribe to Newsletter