Dartmouth engineers develop dime-sized device to capture and convert the...
Dartmouth engineers develop dime-sized device to capture and convert the kinetic energy of the heart into electricity to power a wide-range of implantable devices.

Credit: Patricio R. Sarzosa, Thayer School of Engineering

Power to the pacemaker

Harvesting the heart's energy to power life-saving devices

The heart's motion is so powerful that it can recharge devices that save our lives, according to new research from Dartmouth College.

We're trying to solve the ultimate problem for any implantable biomedical device

John X.J. Zhang

Using a dime-sized invention developed by engineers at the Thayer School of Engineering at Dartmouth, the kinetic energy of the heart can be converted into electricity to power a wide-range of implantable devices, according to the study funded by the National Institutes of Health. Millions of people rely on pacemakers, defibrillators and other live-saving implantable devices powered by batteries that need to be replaced every five to 10 years. Those replacements require surgery which can be costly and create the possibility of complications and infections. "We're trying to solve the ultimate problem for any implantable biomedical device," says Dartmouth engineering professor John X.J. Zhang, a lead researcher on the study his team completed alongside clinicians at the University of Texas in San Antonio. "How do you create an effective energy source so the device will do its job during the entire life span of the patient, without the need for surgery to replace the battery?"

"Of equal importance is that the device not interfere with the body's function," adds Dartmouth research associate Lin Dong, first author on the paper. "We knew it had to be biocompatible, lightweight, flexible, and low profile, so it not only fits into the current pacemaker structure but is also scalable for future multi-functionality."

The team's work proposes modifying pacemakers to harness the kinetic energy of the lead wire that's attached to the heart, converting it into electricity to continually charge the batteries. The added material is a type of thin polymer piezoelectric film called "PVDF" and, when designed with porous structures -- either an array of small buckle beams or a flexible cantilever -- it can convert even small mechanical motion to electricity. An added benefit: the same modules could potentially be used as sensors to enable data collection for real-time monitoring of patients.

The results of the three-year study, completed by Dartmouth's engineering researchers along with clinicians at UT Health San Antonio, were just published in the cover story for Advanced Materials Technologies. The two remaining years of NIH funding plus time to finish the pre-clinical process and obtain regulatory approval puts a self-charging pacemaker approximately five years out from commercialization, according to Zhang. "We've completed the first round of animal studies with great results which will be published soon," says Zhang. "There is already a lot of expressed interest from the major medical technology companies, and Andrew Closson, one of the study's authors working with Lin Dong and an engineering PhD Innovation Program student at Dartmouth, is learning the business and technology transfer skills to be a cohort in moving forward with the entrepreneurial phase of this effort."


Source: Dartmouth College

05.02.2019

Read all latest stories

Related articles

Photo

Electrospinning

Renewing the promise of bioabsorbable implants

Electrospun materials bring a spark of hope to a cardiovascular landscape darkened by setbacks for reabsorbable stents. It was famously said that implanting a device in a person to cure a disease is…

Photo

Monitoring bioresorbable magnesium

New insights on the corrosion of metal implants

Researchers in Zurich have recently been able to monitor the corrosion of bioresorbable magnesium alloys at the nanoscale over a time scale of a few seconds to many hours. This is an important step…

Photo

Open surgery or TAVI?

New ways to treat severe aortic stenosis

New research at the University of Leicester, funded by the British Heart Foundation (BHF), could change the way people living with a debilitating heart condition are treated. The £2.7m clinical…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH